温馨提示×

温馨提示×

您好,登录后才能下订单哦!

密码登录×
登录注册×
其他方式登录
点击 登录注册 即表示同意《亿速云用户服务条款》

MySQL中怎么优化分页查询

发布时间:2021-07-13 16:07:05 来源:亿速云 阅读:167 作者:Leah 栏目:数据库

今天就跟大家聊聊有关MySQL中怎么优化分页查询,可能很多人都不太了解,为了让大家更加了解,小编给大家总结了以下内容,希望大家根据这篇文章可以有所收获。

 分页查询方法:

在MySQL中,分页查询一般都是使用limit子句实现,limit子句声明如下:

LIMIT子句可以被用于指定 SELECT 语句返回的记录数。需注意以下几点:

1、第一个参数指定第一个返回记录行的偏移量

2、第二个参数指定返回记录行的最大数目

3、如果只给定一个参数:它表示返回最大的记录行数目

4、第二个参数为 -1 表示检索从某一个偏移量到记录集的结束所有的记录行

5、初始记录行的偏移量是0(而不是 1)

下面是一个应用实例:

该条语句将会从表 orders_history 中查询第1000条数据之后的10条数据,也就是第1001条到第1010条数据。

数据表中的记录默认使用主键(一般为id)排序,上面的结果相当于:

三次查询时间分别为:

3040 ms

3063 ms

3018 ms

针对这种查询方式,下面测试查询记录量对时间的影响:

三次查询时间如下:

查询1条记录:3072ms 3092ms 3002ms

查询10条记录:3081ms 3077ms 3032ms

查询100条记录:3118ms 3200ms 3128ms

查询1000条记录:3412ms 3468ms 3394ms

查询10000条记录:3749ms 3802ms 3696ms

另外我还做了十来次查询,从查询时间来看,基本可以确定,在查询记录量低于100时,查询时间基本没有差距,随着查询记录量越来越大,所花费的时间也会越来越多。

针对查询偏移量的测试:

三次查询时间如下:

查询100偏移:25ms 24ms 24ms

查询1000偏移:78ms 76ms 77ms

查询10000偏移:3092ms 3212ms 3128ms

查询100000偏移:3878ms 3812ms 3798ms

查询1000000偏移:14608ms 14062ms 14700ms

随着查询偏移的增大,尤其查询偏移大于10万以后,查询时间急剧增加。

这种分页查询方式会从数据库第一条记录开始扫描,所以越往后,查询速度越慢,而且查询的数据越多,也会拖慢总查询速度。

使用子查询优化

这种方式先定位偏移位置的 id,然后往后查询,这种方式适用于 id 递增的情况。

4条语句的查询时间如下:

第1条语句:3674ms

第2条语句:1315ms

第3条语句:1327ms

第4条语句:3710ms

针对上面的查询需要注意:

1、比较第1条语句和第2条语句:使用 select id 代替 select * 速度增加了3倍

2、比较第2条语句和第3条语句:速度相差几十毫秒

3、比较第3条语句和第4条语句:得益于 select id 速度增加,第3条语句查询速度增加了3倍

这种方式相较于原始一般的查询方法,将会增快数倍。

使用 id 限定优化

这种方式假设数据表的id是连续递增的,则我们根据查询的页数和查询的记录数可以算出查询的id的范围,可以使用 id between and 来查询:

查询时间:15ms 12ms 9ms

这种查询方式能够极大地优化查询速度,基本能够在几十毫秒之内完成。限制是只能使用于明确知道id的情况,不过一般建立表的时候,都会添加基本的id字段,这为分页查询带来很多便利。

还可以有另外一种写法:

当然还可以使用 in 的方式来进行查询,这种方式经常用在多表关联的时候进行查询,使用其他表查询的id集合,来进行查询:

这种 in 查询的方式要注意:某些 mysql 版本不支持在 in 子句中使用 limit。

关于数据表的id说明

一般情况下,在数据库中建立表的时候,每一张表强制添加 id 递增字段,这样更方便我们查询数据。

如果数据量很大,比如像订单这类,一般会推荐进行分库分表。这个时候 id 就不建议作为唯一标识了,而应该使用分布式的高并发唯一 id  生成器来生成,并在数据表中使用另外的字段来存储这个唯一标识。

首先使用范围查询定位 id (或者索引),然后再使用索引进行定位数据,即先 select id,然后在 select  *;这样查询的速度将会提升好几倍。

看完上述内容,你们对MySQL中怎么优化分页查询有进一步的了解吗?如果还想了解更多知识或者相关内容,请关注亿速云行业资讯频道,感谢大家的支持。

向AI问一下细节

免责声明:本站发布的内容(图片、视频和文字)以原创、转载和分享为主,文章观点不代表本网站立场,如果涉及侵权请联系站长邮箱:is@yisu.com进行举报,并提供相关证据,一经查实,将立刻删除涉嫌侵权内容。

AI