温馨提示×

温馨提示×

您好,登录后才能下订单哦!

密码登录×
登录注册×
其他方式登录
点击 登录注册 即表示同意《亿速云用户服务条款》

如何利用MapReduce分析明星微博数据

发布时间:2021-12-03 10:33:36 来源:亿速云 阅读:159 作者:小新 栏目:大数据

这篇文章主要介绍了如何利用MapReduce分析明星微博数据,具有一定借鉴价值,感兴趣的朋友可以参考下,希望大家阅读完这篇文章之后大有收获,下面让小编带着大家一起了解一下。

1、项目需求

自定义输入格式,将明星微博数据排序后按粉丝数关注数 微博数分别输出到不同文件中。

2、数据集

明星 明星微博名称 粉丝数 关注数 微博数

俞灏明 俞灏明 10591367 206 558

李敏镐 李敏镐 22898071 11 268

林心如 林心如 57488649 214 5940

黄晓明 黄晓明 22616497 506 2011

张靓颖 张靓颖 27878708 238 3846

李娜 李娜 23309493 81 631

徐小平 徐小平 11659926 1929 13795

唐嫣 唐嫣 24301532 200 2391

有斐君 有斐君 8779383 577 4251

3、分析

自定义InputFormat读取明星微博数据,通过自定义getSortedHashtableByValue方法分别对明星的fan、followers、microblogs数据进行排序,然后利用MultipleOutputs输出不同项到不同的文件中

4、实现

1)、定义WeiBo实体类,实现WritableComparable接口

package com.buaa;  import java.io.DataInput; import java.io.DataOutput; import java.io.IOException;  import org.apache.hadoop.io.WritableComparable;  /**  * @ProjectName MicroblogStar * @PackageName com.buaa * @ClassName WeiBo * @Description TODO * @Author 刘吉超 * @Date 2016-05-07 14:54:29 */ public class WeiBo implements WritableComparable<Object> {     // 粉丝     private int fan;     // 关注     private int followers;     // 微博数     private int microblogs;          public WeiBo(){};          public WeiBo(int fan,int followers,int microblogs){         this.fan = fan;         this.followers = followers;         this.microblogs = microblogs;     }          public void set(int fan,int followers,int microblogs){         this.fan = fan;         this.followers = followers;         this.microblogs = microblogs;     }          // 实现WritableComparable的readFields()方法,以便该数据能被序列化后完成网络传输或文件输入     @Override     public void readFields(DataInput in) throws IOException {         fan  = in.readInt();         followers = in.readInt();         microblogs = in.readInt();     }          // 实现WritableComparable的write()方法,以便该数据能被序列化后完成网络传输或文件输出      @Override     public void write(DataOutput out) throws IOException {         out.writeInt(fan);         out.writeInt(followers);         out.writeInt(microblogs);     }          @Override     public int compareTo(Object o) {         // TODO Auto-generated method stub         return 0;     }      public int getFan() {         return fan;     }      public void setFan(int fan) {         this.fan = fan;     }      public int getFollowers() {         return followers;     }      public void setFollowers(int followers) {         this.followers = followers;     }      public int getMicroblogs() {         return microblogs;     }      public void setMicroblogs(int microblogs) {         this.microblogs = microblogs;     } }

2)、自定义WeiboInputFormat,继承FileInputFormat抽象类

package com.buaa;  import java.io.IOException;  import org.apache.hadoop.conf.Configuration; import org.apache.hadoop.fs.FSDataInputStream; import org.apache.hadoop.fs.FileSystem; import org.apache.hadoop.fs.Path; import org.apache.hadoop.io.Text; import org.apache.hadoop.mapreduce.InputSplit; import org.apache.hadoop.mapreduce.RecordReader; import org.apache.hadoop.mapreduce.TaskAttemptContext; import org.apache.hadoop.mapreduce.lib.input.FileInputFormat; import org.apache.hadoop.mapreduce.lib.input.FileSplit; import org.apache.hadoop.util.LineReader;  /**  * @ProjectName MicroblogStar * @PackageName com.buaa * @ClassName WeiboInputFormat * @Description TODO * @Author 刘吉超 * @Date 2016-05-07 10:23:28 */ public class WeiboInputFormat extends FileInputFormat<Text,WeiBo>{       @Override      public RecordReader<Text, WeiBo> createRecordReader(InputSplit arg0, TaskAttemptContext arg1) throws IOException, InterruptedException {           // 自定义WeiboRecordReader类,按行读取           return new WeiboRecordReader();      }       public class WeiboRecordReader extends RecordReader<Text, WeiBo>{             public LineReader in;              // 声明key类型             public Text lineKey = new Text();             // 声明 value类型             public WeiBo lineValue = new WeiBo();                          @Override             public void initialize(InputSplit input, TaskAttemptContext context) throws IOException, InterruptedException {                 // 获取split                 FileSplit split = (FileSplit)input;                 // 获取配置                  Configuration job = context.getConfiguration();                 // 分片路径                  Path file = split.getPath();                                  FileSystem fs = file.getFileSystem(job);                  // 打开文件                    FSDataInputStream filein = fs.open(file);                                  in = new LineReader(filein,job);              }              @Override             public boolean nextKeyValue() throws IOException, InterruptedException {                 // 一行数据                 Text line = new Text();                                  int linesize = in.readLine(line);                                  if(linesize == 0)                      return false;                                   // 通过分隔符'\t',将每行的数据解析成数组                 String[] pieces = line.toString().split("\t");                                  if(pieces.length != 5){                       throw new IOException("Invalid record received");                   }                                   int a,b,c;                 try{                       // 粉丝                       a = Integer.parseInt(pieces[2].trim());                     // 关注                     b = Integer.parseInt(pieces[3].trim());                     // 微博数                     c = Integer.parseInt(pieces[4].trim());                 }catch(NumberFormatException nfe){                       throw new IOException("Error parsing floating poing value in record");                   }                                  //自定义key和value值                 lineKey.set(pieces[0]);                   lineValue.set(a, b, c);                                  return true;             }                          @Override             public void close() throws IOException {                 if(in != null){                     in.close();                 }             }              @Override             public Text getCurrentKey() throws IOException, InterruptedException {                 return lineKey;             }              @Override             public WeiBo getCurrentValue() throws IOException, InterruptedException {                 return lineValue;             }              @Override             public float getProgress() throws IOException, InterruptedException {                 return 0;             }                      } }

3)、编写mr程序

package com.buaa;  import java.io.IOException; import java.util.Arrays; import java.util.Comparator; import java.util.HashMap; import java.util.Map; import java.util.Map.Entry;  import org.apache.hadoop.conf.Configuration; import org.apache.hadoop.conf.Configured; import org.apache.hadoop.fs.FileSystem; import org.apache.hadoop.fs.Path; import org.apache.hadoop.io.IntWritable; import org.apache.hadoop.io.Text; import org.apache.hadoop.mapreduce.Job; import org.apache.hadoop.mapreduce.Mapper; import org.apache.hadoop.mapreduce.Reducer; import org.apache.hadoop.mapreduce.lib.input.FileInputFormat; import org.apache.hadoop.mapreduce.lib.output.FileOutputFormat; import org.apache.hadoop.mapreduce.lib.output.LazyOutputFormat; import org.apache.hadoop.mapreduce.lib.output.MultipleOutputs; import org.apache.hadoop.mapreduce.lib.output.TextOutputFormat; import org.apache.hadoop.util.Tool; import org.apache.hadoop.util.ToolRunner;  /**  * @ProjectName MicroblogStar * @PackageName com.buaa * @ClassName WeiboCount * @Description TODO * @Author 刘吉超 * @Date 2016-05-07 09:07:36 */ public class WeiboCount extends Configured implements Tool {     // tab分隔符     private static String TAB_SEPARATOR = "\t";     // 粉丝     private static String FAN = "fan";     // 关注     private static String FOLLOWERS = "followers";     // 微博数     private static String MICROBLOGS = "microblogs";          public static class WeiBoMapper extends Mapper<Text, WeiBo, Text, Text> {         @Override         protected void map(Text key, WeiBo value, Context context) throws IOException, InterruptedException {             // 粉丝             context.write(new Text(FAN), new Text(key.toString() + TAB_SEPARATOR + value.getFan()));             // 关注             context.write(new Text(FOLLOWERS), new Text(key.toString() + TAB_SEPARATOR + value.getFollowers()));             // 微博数             context.write(new Text(MICROBLOGS), new Text(key.toString() + TAB_SEPARATOR + value.getMicroblogs()));         }     }          public static class WeiBoReducer extends Reducer<Text, Text, Text, IntWritable> {         private MultipleOutputs<Text, IntWritable> mos;          protected void setup(Context context) throws IOException, InterruptedException {             mos = new MultipleOutputs<Text, IntWritable>(context);         }          protected void reduce(Text Key, Iterable<Text> Values,Context context) throws IOException, InterruptedException {             Map<String,Integer> map = new HashMap< String,Integer>();                          for(Text value : Values){                 // value = 名称 + (粉丝数 或 关注数 或 微博数)                 String[] records = value.toString().split(TAB_SEPARATOR);                 map.put(records[0], Integer.parseInt(records[1].toString()));             }                          // 对Map内的数据进行排序             Map.Entry<String, Integer>[] entries = getSortedHashtableByValue(map);                          for(int i = 0; i < entries.length;i++){                 mos.write(Key.toString(),entries[i].getKey(), entries[i].getValue());             }                        }          protected void cleanup(Context context) throws IOException, InterruptedException {             mos.close();         }     }          @SuppressWarnings("deprecation")     @Override     public int run(String[] args) throws Exception {         // 配置文件对象         Configuration conf = new Configuration();                  // 判断路径是否存在,如果存在,则删除         Path mypath = new Path(args[1]);         FileSystem hdfs = mypath.getFileSystem(conf);         if (hdfs.isDirectory(mypath)) {             hdfs.delete(mypath, true);         }                  // 构造任务         Job job = new Job(conf, "weibo");         // 主类         job.setJarByClass(WeiboCount.class);          // Mapper         job.setMapperClass(WeiBoMapper.class);         // Mapper key输出类型         job.setMapOutputKeyClass(Text.class);         // Mapper value输出类型         job.setMapOutputValueClass(Text.class);                  // Reducer         job.setReducerClass(WeiBoReducer.class);         // Reducer key输出类型         job.setOutputKeyClass(Text.class);         // Reducer value输出类型         job.setOutputValueClass(IntWritable.class);                  // 输入路径         FileInputFormat.addInputPath(job, new Path(args[0]));         // 输出路径         FileOutputFormat.setOutputPath(job, new Path(args[1]));                  // 自定义输入格式         job.setInputFormatClass(WeiboInputFormat.class) ;         //自定义文件输出类别         MultipleOutputs.addNamedOutput(job, FAN, TextOutputFormat.class, Text.class, IntWritable.class);         MultipleOutputs.addNamedOutput(job, FOLLOWERS, TextOutputFormat.class, Text.class, IntWritable.class);         MultipleOutputs.addNamedOutput(job, MICROBLOGS, TextOutputFormat.class, Text.class, IntWritable.class);                  // 去掉job设置outputFormatClass,改为通过LazyOutputFormat设置           LazyOutputFormat.setOutputFormatClass(job, TextOutputFormat.class);                    //提交任务           return job.waitForCompletion(true)?0:1;     }          // 对Map内的数据进行排序(只适合小数据量)     @SuppressWarnings("unchecked")     public static Entry<String, Integer>[] getSortedHashtableByValue(Map<String, Integer> h) {           Entry<String, Integer>[] entries = (Entry<String, Integer>[]) h.entrySet().toArray(new Entry[0]);           // 排序         Arrays.sort(entries, new Comparator<Entry<String, Integer>>() {             public int compare(Entry<String, Integer> entry1, Entry<String, Integer> entry2) {                 return entry2.getValue().compareTo(entry1.getValue());             }          });         return entries;       }          public static void main(String[] args) throws Exception {         String[] args0 = {                 "hdfs://ljc:9000/buaa/microblog/weibo.txt",                 "hdfs://ljc:9000/buaa/microblog/out/"          };         int ec = ToolRunner.run(new Configuration(), new WeiboCount(), args0);         System.exit(ec);     } }

5、运行结果

如何利用MapReduce分析明星微博数据

感谢你能够认真阅读完这篇文章,希望小编分享的“如何利用MapReduce分析明星微博数据”这篇文章对大家有帮助,同时也希望大家多多支持亿速云,关注亿速云行业资讯频道,更多相关知识等着你来学习!

向AI问一下细节

免责声明:本站发布的内容(图片、视频和文字)以原创、转载和分享为主,文章观点不代表本网站立场,如果涉及侵权请联系站长邮箱:is@yisu.com进行举报,并提供相关证据,一经查实,将立刻删除涉嫌侵权内容。

AI