这篇文章主要介绍“R语言数据可视化的实现方法是什么”,在日常操作中,相信很多人在R语言数据可视化的实现方法是什么问题上存在疑惑,小编查阅了各式资料,整理出简单好用的操作方法,希望对大家解答”R语言数据可视化的实现方法是什么”的疑惑有所帮助!接下来,请跟着小编一起来学习吧!
df2<-read.csv("20210410/001.csv",header=T)p1<-ggplot(data=df2,aes(x=value,y=variable))+ geom_boxplot()+ theme_bw()+ scale_y_discrete(position = "right")+ theme(panel.border = element_blank(), panel.grid = element_blank(), axis.line.x = element_line(), axis.line.y = element_line(), axis.text.y = element_blank(), axis.title.y = element_blank())+ labs(x="Predicted \n copy number")+ geom_hline(yintercept = 6.5,lty="dashed")+ annotate(geom="text", x=-1.2,y=3,label="C degradation",angle=90)+ annotate(geom="text", x=-1.2,y=12,label="N cycling",angle=90)p1
df<-read.csv("20210410/002.csv",header=T)head(df)df1<-reshape2::melt(df,id.vars="Sample")head(df1)head(df1)df1%>% #reshape2::melt(id.vars="Sample")%>% mutate(group_1 = case_when( value <= 0 ~ "A", TRUE ~ "B" ))%>% mutate(group_2=case_when( value >= -1 & value < -0.7 ~ "[-1,-0.7)", value >= -0.7 & value < -0.5 ~ "[-0.7,-0.5)", value >= -0.5 & value < -0.3 ~ "[-0.5,-0.3)", value >= -0.3 & value <= 0 ~ "[-0.3,0]", value > 0 & value <= 0.3 ~ "(0,0.3)", value > 0.3 & value <= 0.5 ~ "(0.3,0.5]", value > 0.5 & value <= 0.7 ~ "(0.5,0.7]", value > 0.7 & value <= 1 ~ "(0.7,1]", ))%>% mutate(value_1=case_when( value >= -1 & value < -0.7 ~ -0.8, value >= -0.7 & value < -0.5 ~ -0.6, value >= -0.5 & value < -0.3 ~ -0.4, value >= -0.3 & value <= 0 ~ -0.2, value > 0 & value <= 0.3 ~ 0.2, value > 0.3 & value <= 0.5 ~ 0.4, value > 0.5 & value <= 0.7 ~ 0.6, value > 0.7 & value <= 1 ~ 0.8, )) -> df3df4<-data.frame( x = seq(0.5,6.5,1), xend = seq(0.5,6.5,1), y = -Inf, yend = Inf)df4df5<-data.frame( x = -Inf, xend = Inf, y = seq(0.5,15.5,1), yend = seq(0.5,15.5,1))p2<-ggplot(data=df3,aes(x=Sample,y=variable))+ geom_point(aes(size=abs(value_1), color=factor(value_1)), shape=15)+ scale_color_manual(values = c(rep("#fe0000",4), rep("#009ccc",4)))+ theme_bw()+ theme(panel.grid = element_blank(), panel.border = element_blank(), axis.ticks = element_blank(), legend.position = "none")+ geom_segment(data=df4,aes(x=x,xend=xend,y=y,yend=yend), color="grey")+ geom_segment(data=df5,aes(x=x,xend=xend,y=y,yend=yend), color="grey")+ scale_size_continuous(range = c(2,10))+ scale_y_discrete(position = "right", expand = c(0,0))+ labs(x=NULL,y=NULL)+ scale_x_discrete(expand = c(0,0))p2+ geom_segment(x=7.3,xend=7.3, y=10,yend = 15)+ geom_segment(x=7,xend=7, y=7,yend = 9)+ geom_segment(x=7,xend=7, y=1,yend = 6)+ annotate("text",x=6,y=13,label="group_A", angle=90,vjust=11)+ annotate("text",x=6,y=8,label="group_B", angle=90,vjust=10)+ annotate("text",x=6,y=4,label="group_C", angle=90,vjust=10)+ theme(plot.margin = unit(c(0.2,2,0.2,0.3),'cm'))+ coord_cartesian(clip = "off") -> p2_1p2_1
p3<-ggplot(data = df6,aes(x=x,y=y))+ geom_point(aes(size=value,color=group),shape=15)+ geom_text(aes(x=x+0.1,label=label))+ scale_size_continuous(range = c(2,10))+ scale_color_manual(values = c("#fe0000","#009ccc"))+ theme(panel.background = element_blank(), legend.position = "none", axis.title = element_blank(), axis.text = element_blank(), axis.ticks = element_blank(), plot.margin = unit(c(0.2,1,0.2,0.2),"cm"))+ ylim(0,15)+ coord_cartesian(clip = "off")+ theme(aspect.ratio = 11)p3
p1+p2_1+p3+ plot_layout(widths = c(1,2,0.4))
到此,关于“R语言数据可视化的实现方法是什么”的学习就结束了,希望能够解决大家的疑惑。理论与实践的搭配能更好的帮助大家学习,快去试试吧!若想继续学习更多相关知识,请继续关注亿速云网站,小编会继续努力为大家带来更多实用的文章!
亿速云「云服务器」,即开即用、新一代英特尔至强铂金CPU、三副本存储NVMe SSD云盘,价格低至29元/月。点击查看>>
免责声明:本站发布的内容(图片、视频和文字)以原创、转载和分享为主,文章观点不代表本网站立场,如果涉及侵权请联系站长邮箱:is@yisu.com进行举报,并提供相关证据,一经查实,将立刻删除涉嫌侵权内容。
原文链接:https://my.oschina.net/u/4579431/blog/5013691