温馨提示×

温馨提示×

您好,登录后才能下订单哦!

密码登录×
登录注册×
其他方式登录
点击 登录注册 即表示同意《亿速云用户服务条款》

Pytorch Fashion Minst数据集读取方法

发布时间:2021-07-12 10:25:46 来源:亿速云 阅读:276 作者:chen 栏目:大数据

这篇文章主要讲解了“Pytorch Fashion Minst数据集读取方法”,文中的讲解内容简单清晰,易于学习与理解,下面请大家跟着小编的思路慢慢深入,一起来研究和学习“Pytorch Fashion Minst数据集读取方法”吧!

本章节主要举例说明了数据集读取的问题,针对于trochvision中Fashion Mnist数据集的读写问题;

其中,具体的读取训练集和测试集为:

mnist_train = torchvision.datasets.FashionMNIST(root='~/Datasets/FashionMNIST', train=True, download=True, transform=transforms.ToTensor())
mnist_test = torchvision.datasets.FashionMNIST(root='~/Datasets/FashionMNIST', train=False, download=True, transform=transforms.ToTensor())

其中有两个参数注意一下,train代表是否参与训练,最后一个参数代表将数据集的内容转化为tensor的表示形式;

依然可以使用DataLoader和batch_size进行分批训练;

train_iter = torch.utils.data.DataLoader(mnist_train, batch_size=batch_size, shuffle=True, num_workers=num_workers)
test_iter = torch.utils.data.DataLoader(mnist_test, batch_size=batch_size, shuffle=False, num_workers=num_workers)

这里说明一下train_iter,这是一个分批的数据结构,这里根据batch_size分成了235批;

对于每次train_iter的遍历,也使用for循环挨个喂数据;

并且DataLoader可以采用多线程进行读取,这样读取的时间更快;

start = time.time()
    for X, y in train_iter:
        continue
    print('%.2f sec' % (time.time() - start))

感谢各位的阅读,以上就是“Pytorch Fashion Minst数据集读取方法”的内容了,经过本文的学习后,相信大家对Pytorch Fashion Minst数据集读取方法这一问题有了更深刻的体会,具体使用情况还需要大家实践验证。这里是亿速云,小编将为大家推送更多相关知识点的文章,欢迎关注!

向AI问一下细节

免责声明:本站发布的内容(图片、视频和文字)以原创、转载和分享为主,文章观点不代表本网站立场,如果涉及侵权请联系站长邮箱:is@yisu.com进行举报,并提供相关证据,一经查实,将立刻删除涉嫌侵权内容。

AI