这篇文章主要讲解了“Python怎么计算容积率和建筑密度”,文中的讲解内容简单清晰,易于学习与理解,下面请大家跟着小编的思路慢慢深入,一起来研究和学习“Python怎么计算容积率和建筑密度”吧!
先在ArcGIS计算好面积,导出dbf表格,在Python进行数据处理和可视化。
from dbfread import DBF
import pandas as pd
### 读取ArcGIS里面导出的dbf表格
table = DBF("汇总表.dbf",encoding="utf8")
data = pd.DataFrame(table)
data.head()
data.rename(columns={'地块面':'地块面积', 'layers':'楼层', '建筑总':'建筑总面积','基底面':'基底面积'}, inplace = True)
data = data.drop(labels=["OBJECTID","Shape_Leng","Shape_Area","楼层"],axis=1)
data = data[["地块名", "基底面积", "建筑总面积", "地块面积"]]
data.head()
pivot1 = pd.pivot_table(data,index=["地块名"],values=["基底面积","建筑总面积",],aggfunc=sum)
pivot2 = pd.pivot_table(data,index=["地块名"],values=["地块面积",],aggfunc=max)
pivot = pd.merge(pivot1, pivot2, on="地块名")
pivot
pivot["建筑密度"] = pivot["基底面积"]/pivot["地块面积"]
pivot["容积率"] = pivot["建筑总面积"]/pivot["地块面积"]
pivot
import geopandas as gpd
import matplotlib.pyplot as plt
regibns = gpd.GeoDataFrame.from_file('MyProject.gdb',layer='地块')
regibns.plot()
reg = pd.merge(regibns, pivot, left_on='地块名',right_on='地块名')
reg
reg.plot(figsize=(12, 12), column='容积率', scheme='quantiles', legend=True, cmap='Reds', edgecolor='k',)
感谢各位的阅读,以上就是“Python怎么计算容积率和建筑密度”的内容了,经过本文的学习后,相信大家对Python怎么计算容积率和建筑密度这一问题有了更深刻的体会,具体使用情况还需要大家实践验证。这里是亿速云,小编将为大家推送更多相关知识点的文章,欢迎关注!
亿速云「云服务器」,即开即用、新一代英特尔至强铂金CPU、三副本存储NVMe SSD云盘,价格低至29元/月。点击查看>>
免责声明:本站发布的内容(图片、视频和文字)以原创、转载和分享为主,文章观点不代表本网站立场,如果涉及侵权请联系站长邮箱:is@yisu.com进行举报,并提供相关证据,一经查实,将立刻删除涉嫌侵权内容。
原文链接:https://my.oschina.net/u/4899266/blog/4926413