温馨提示×

温馨提示×

您好,登录后才能下订单哦!

密码登录×
登录注册×
其他方式登录
点击 登录注册 即表示同意《亿速云用户服务条款》

如何分析基于Kubernetes的Spark部署

发布时间:2021-12-17 10:05:05 来源:亿速云 阅读:120 作者:柒染 栏目:大数据

这篇文章将为大家详细讲解有关如何分析基于Kubernetes的Spark部署,文章内容质量较高,因此小编分享给大家做个参考,希望大家阅读完这篇文章后对相关知识有一定的了解。

Yarn曾经是Hadoop默认的资源编排管理平台。但最近情况有所变化,特别是对于Hadoop中的Spark,由于其与S3等其他存储平台集成得很好,而与Hadoop生态中其他组件反而没有太紧密的关联,因此Kubernetes正迅速替代Yarn,成为基于对象存储的Spark系统的默认编排管理平台。在这篇文章中,我们将深入研究如何在Kubernetes集群上构建和部署Spark容器。由于Spark的运行依赖于数据,我们将配置Spark集群通过S3 API进行存储操作。

在Kubernetes上部署应用的第一步,是创建容器。虽然有些项目会提供官方的容器镜像,但截止到写此文时,Apache Spark并没有提供官方镜像。因此我们将自己创建Spark容器,让我们从Dockerfile开始。

FROM java:openjdk-8-jdk 
 
ENV hadoop_ver 2.8.2 
ENV spark_ver 2.4.4 
 
RUN mkdir -p /opt && \ 
cd /opt && \ 
curl http://archive.apache.org/dist/hadoop/common/hadoop-${hadoop_ver}/hadoop-${hadoop_ver}.tar.gz | \ 
    tar -zx && \ 
ln -s hadoop-${hadoop_ver} hadoop && \ 
echo Hadoop ${hadoop_ver} installed in /opt 
 
RUN mkdir -p /opt && \ 
cd /opt && \ 
curl http://archive.apache.org/dist/spark/spark-${spark_ver}/spark-${spark_ver}-bin-without-hadoop.tgz | \ 
    tar -zx && \ 
ln -s spark-${spark_ver}-bin-without-hadoop spark && \ 
echo Spark ${spark_ver} installed in /opt 
 
ENV SPARK_HOME=/opt/spark 
ENV PATH=$PATH:$SPARK_HOME/bin 
ENV HADOOP_HOME=/opt/hadoop 
ENV PATH=$PATH:$HADOOP_HOME/bin 
ENV LD_LIBRARY_PATH=$HADOOP_HOME/lib/native 
 
RUN curl http://central.maven.org/maven2/org/apache/hadoop/hadoop-aws/2.8.2/hadoop-aws-2.8.2.jar -o /opt/spark/jars/hadoop-aws-2.8.2.jar 
RUN curl http://central.maven.org/maven2/org/apache/httpcomponents/httpclient/4.5.3/httpclient-4.5.3.jar -o /opt/spark/jars/httpclient-4.5.3.jar 
RUN curl http://central.maven.org/maven2/joda-time/joda-time/2.9.9/joda-time-2.9.9.jar -o /opt/spark/jars/joda-time-2.9.9.jar 
RUN curl http://central.maven.org/maven2/com/amazonaws/aws-java-sdk-core/1.11.712/aws-java-sdk-core-1.11.712.jar -o /opt/spark/jars/aws-java-sdk-core-1.11.712.jar 
RUN curl http://central.maven.org/maven2/com/amazonaws/aws-java-sdk/1.11.712/aws-java-sdk-1.11.712.jar -o /opt/spark/jars/aws-java-sdk-1.11.712.jar 
RUN curl http://central.maven.org/maven2/com/amazonaws/aws-java-sdk-kms/1.11.712/aws-java-sdk-kms-1.11.712.jar -o /opt/spark/jars/aws-java-sdk-kms-1.11.712.jar 
RUN curl http://central.maven.org/maven2/com/amazonaws/aws-java-sdk-s3/1.11.712/aws-java-sdk-s3-1.11.712.jar -o /opt/spark/jars/aws-java-sdk-s3-1.11.712.jar 
 
ADD start-common.sh start-worker start-master / 
ADD core-site.xml /opt/spark/conf/core-site.xml 
ADD spark-defaults.conf /opt/spark/conf/spark-defaults.conf 
ENV PATH $PATH:/opt/spark/bin

在这个Dockerfile中,我们首先从官方地址下载Apache Spark和Hadoop,然后从Maven获取关联的jar包。当所有关联的文件都已经下载并解压到一个特定的目录后,我们将这些重要的配置文件添加到镜像中。

在这个过程中,你可以很方便的添加自己环境特有的配置。

原本我们可以跳过以上步骤,直接使用一个预先构建好的镜像,但是通过解读这些步骤可以让我们的读者看到Spark容器内部的内容,高级用户可以据此修改来满足他们特殊的需求。

以上示例中使用到的Dockerfile和其他关联的配置文件,可以从这个GitHub仓库中获取。如果要使用这个仓库中的内容,请先使用以下命令将其克隆到本地:

git clone git@github.com:devshlabs/spark-kubernetes.git

现在,你可以根据需要在你的环境中进行任何更改,然后构建镜像,并上传到你使用的容器注册表中。在本文的示例中,我使用Dockerhub作为容器注册表,命令如下:

cd spark-kubernetes/spark-container 
docker build . -t mydockerrepo/spark:2.4.4 
docker push mydockerrepo/spark:2.4.4

记得将其中的mydockerrepo替换为你实际的注册表名字。

在Kubernetes上部署Spark

至此,Spark容器镜像已经构建好,并可以拉取使用了。让我们使用此镜像来部署Spark Master和Worker。第一步是创建Spark Master。我们将使用Kubernetes ReplicationController创建Spark Master。在本文的示例中,我仅用单实例创建Spark Master。而在有HA需求的生产环境中,你可能需要将副本数设置为3或者以上。

kind: ReplicationController 
apiVersion: v1 
metadata: 
name: spark-master-controller 
spec: 
replicas: 1 
selector: 
component: spark-master 
template: 
metadata: 
  labels: 
    component: spark-master 
spec: 
  hostname: spark-master-hostname 
  subdomain: spark-master-headless 
  containers: 
    - name: spark-master 
      image: mydockerrepo/spark:2.4.4 
      imagePullPolicy: Always 
      command: ["/start-master"] 
      ports: 
        - containerPort: 7077 
        - containerPort: 8080 
      resources: 
        requests: 
          cpu: 100m

为了使Spark Worker节点可以发现Spark Master节点,我们还需要创建headless服务。
当你从GitHub仓库完成克隆,并进入spark-kubernetes目录后,就可以启动Spark Master服务了,命令如下:

kubectl create -f spark-master-controller.yaml 
kubectl create -f spark-master-service.yaml

现在,确保Master节点和所有的服务都正常运行,然后就可以开始部署Worker节点了。Spark Worker的副本数设置为2,你可以根据需要修改。Worker启动命令如下:
kubectl create -f spark-worker-controller.yaml
最后,通过以下命令确认是否所有服务都正常运行:
kubectl get all
执行以上命令,你应该可以看到类似下面的内容:

NAME                               READY     STATUS    RESTARTS   AGE 
po/spark-master-controller-5rgz2   1/1       Running   0          9m 
po/spark-worker-controller-0pts6   1/1       Running   0          9m 
po/spark-worker-controller-cq6ng   1/1       Running   0          9m 
 
NAME                         DESIRED   CURRENT   READY     AGE 
rc/spark-master-controller   1         1         1         9m 
rc/spark-worker-controller   2         2         2         9m 
 
NAME               CLUSTER-IP      EXTERNAL-IP   PORT(S)             AGE 
svc/spark-master   10.108.94.160           7077/TCP,8080/TCP   9m

向Spark集群提交Job

现在让我们提交一个Job,看看是否执行正常。不过在此之前,你需要一个有效的AWS S3账户,以及存有样本数据的桶存在。我使用了Kaggle下载样本数据,样本数据可以从https://www.kaggle.com/datasna ... s.csv获取,获取以后需要上传到S3的桶里。假定桶名是s3-data-bucket,那么样本数据文件则位于s3-data-bucket/data.csv。
数据准备好以后,将其加载到一个Spark master pod中执行。以Pod名为spark-master-controller-5rgz2为例,命令如下:
kubectl exec -it spark-master-controller-v2hjb /bin/bash
如果你登录进入了Spark系统,可以运行Spark Shell:

export SPARK_DIST_CLASSPATH=$(hadoop classpath) 
spark-shell 
Setting default log level to "WARN". 
To adjust logging level use sc.setLogLevel(newLevel). For SparkR, use setLogLevel(newLevel). 
Spark context Web UI available at http://192.168.132.147:4040 
Spark context available as 'sc' (master = spark://spark-master:7077, app id = app-20170405152342-0000). 
Spark session available as 'spark'. 
Welcome to 
  ____              __ 
 / __/__  ___ _____/ /__ 
_\ \/ _ \/ _ `/ __/  '_/ 
/___/ .__/\_,_/_/ /_/\_\   version 2.4.4 
  /_/ 
 
Using Scala version 2.11.12 (Java HotSpot(TM) 64-Bit Server VM, Java 1.8.0_221) 
Type in expressions to have them evaluated. 
Type :help for more information. 
 
scala>

现在让我们告诉Spark Master,S3存储的详细信息,在上文所示的Scale提示符中输入以下配置:

sc.hadoopConfiguration.set("fs.s3a.endpoint", "https://s3.amazonaws.com") 
sc.hadoopConfiguration.set("fs.s3a.access.key", "s3-access-key") 
sc.hadoopConfiguration.set("fs.s3a.secret.key", "s3-secret-key")

现在,只需将以下内容粘贴到Scala提示符中,以提交Spark Job(请记得修改S3相关字段):

import org.apache.spark._ 
import org.apache.spark.rdd.RDD 
import org.apache.spark.util.IntParam 
import org.apache.spark.sql.SQLContext 
import org.apache.spark.graphx._ 
import org.apache.spark.graphx.util.GraphGenerators 
import org.apache.spark.mllib.regression.LabeledPoint 
import org.apache.spark.mllib.linalg.Vectors 
import org.apache.spark.mllib.tree.DecisionTree 
import org.apache.spark.mllib.tree.model.DecisionTreeModel 
import org.apache.spark.mllib.util.MLUtils 
 
val conf = new SparkConf().setAppName("YouTube") 
val sqlContext = new SQLContext(sc) 
 
import sqlContext.implicits._ 
import sqlContext._ 
 
val youtubeDF = spark.read.format("csv").option("sep", ",").option("inferSchema", "true").option("header", "true").load("s3a://s3-data-bucket/data.csv") 
 
youtubeDF.registerTempTable("popular") 
 
val fltCountsql = sqlContext.sql("select s.title,s.views from popular s") 
fltCountsql.show()

最后,你可以使用kubectl patch command命令更新Spark部署。比如,你可以在负载较高时添加更多工作节点,然后在负载下降后删除这些工作节点。

关于如何分析基于Kubernetes的Spark部署就分享到这里了,希望以上内容可以对大家有一定的帮助,可以学到更多知识。如果觉得文章不错,可以把它分享出去让更多的人看到。

向AI问一下细节

免责声明:本站发布的内容(图片、视频和文字)以原创、转载和分享为主,文章观点不代表本网站立场,如果涉及侵权请联系站长邮箱:is@yisu.com进行举报,并提供相关证据,一经查实,将立刻删除涉嫌侵权内容。

AI