温馨提示×

温馨提示×

您好,登录后才能下订单哦!

密码登录×
登录注册×
其他方式登录
点击 登录注册 即表示同意《亿速云用户服务条款》

Spark怎么进行动态资源分配

发布时间:2021-09-09 11:38:46 来源:亿速云 阅读:150 作者:chen 栏目:大数据

本篇内容介绍了“Spark怎么进行动态资源分配”的有关知识,在实际案例的操作过程中,不少人都会遇到这样的困境,接下来就让小编带领大家学习一下如何处理这些情况吧!希望大家仔细阅读,能够学有所成!

一、操作场景

对于Spark应用来说,资源是影响Spark应用执行效率的一个重要因素。当一个长期运行的服务,若分配给它多个Executor,可是却没有任何任务分配给它,而此时有其他的应用却资源紧张,这就造成了很大的资源浪费和资源不合理的调度。

动态资源调度就是为了解决这种场景,根据当前应用任务的负载情况,实时的增减Executor个数,从而实现动态分配资源,使整个Spark系统更加健康。

二、动态资源策略

Spark怎么进行动态资源分配

1、资源分配策略

开启动态分配策略后,application会在task因没有足够资源被挂起的时候去动态申请资源,这种情况意味着该application现有的executor无法满足所有task并行运行。spark一轮一轮的申请资源,当有task挂起或等待spark.dynamicAllocation.schedulerBacklogTimeout(默认1s)`时间的时候,会开始动态资源分配;之后会每隔spark.dynamicAllocation.sustainedSchedulerBacklogTimeout(默认1s)时间申请一次,直到申请到足够的资源。每次申请的资源量是指数增长的,即1,2,4,8等。
之所以采用指数增长,出于两方面考虑:其一,开始申请的少是考虑到可能application会马上得到满足;其次要成倍增加,是为了防止application需要很多资源,而该方式可以在很少次数的申请之后得到满足。

2、资源回收策略

当application的executor空闲时间超过spark.dynamicAllocation.executorIdleTimeout(默认60s)后,就会被回收。

三、操作步骤

1、yarn的配置

首先需要对YARN进行配置,使其支持Spark的Shuffle Service。

修改每台集群上的yarn-site.xml:

 - 修改<property><name>yarn.nodemanager.aux-services</name><value>mapreduce_shuffle,spark_shuffle</value></property>
 - 增加<property><name>yarn.nodemanager.aux-services.spark_shuffle.class</name><value>org.apache.spark.network.yarn.YarnShuffleService</value></property><property><name>spark.shuffle.service.port</name><value>7337</value></property>

将$SPARKHOME/lib/spark-X.X.X-yarn-shuffle.jar拷贝到每台NodeManager的${HADOOPHOME}/share/hadoop/yarn/lib/下, 重启所有修改配置的节点。

2、Spark的配置

配置$SPARK_HOME/conf/spark-defaults.conf,增加以下参数:

spark.shuffle.service.enabled true   //启用External shuffle Service服务spark.shuffle.service.port 7337 //Shuffle Service默认服务端口,必须和yarn-site中的一致spark.dynamicAllocation.enabled true  //开启动态资源分配spark.dynamicAllocation.minExecutors 1  //每个Application最小分配的executor数spark.dynamicAllocation.maxExecutors 30  //每个Application最大并发分配的executor数spark.dynamicAllocation.schedulerBacklogTimeout 1s spark.dynamicAllocation.sustainedSchedulerBacklogTimeout 5s

四、启动

使用spark-sql On Yarn执行SQL,动态分配资源。以yarn-client模式启动ThriftServer:

cd $SPARK_HOME/sbin/./start-thriftserver.sh \--master yarn-client \--conf spark.driver.memory=10G \--conf spark.shuffle.service.enabled=true \--conf spark.dynamicAllocation.enabled=true \--conf spark.dynamicAllocation.minExecutors=1 \--conf spark.dynamicAllocation.maxExecutors=300 \--conf spark.dynamicAllocation.sustainedSchedulerBacklogTimeout=5s

启动后,ThriftServer会在Yarn上作为一个长服务来运行。

“Spark怎么进行动态资源分配”的内容就介绍到这里了,感谢大家的阅读。如果想了解更多行业相关的知识可以关注亿速云网站,小编将为大家输出更多高质量的实用文章!

向AI问一下细节

免责声明:本站发布的内容(图片、视频和文字)以原创、转载和分享为主,文章观点不代表本网站立场,如果涉及侵权请联系站长邮箱:is@yisu.com进行举报,并提供相关证据,一经查实,将立刻删除涉嫌侵权内容。

AI