这篇文章主要讲解了“怎么使用Flink TableAPI和SQL /Elasticsearch”,文中的讲解内容简单清晰,易于学习与理解,下面请大家跟着小编的思路慢慢深入,一起来研究和学习“怎么使用Flink TableAPI和SQL /Elasticsearch”吧!
使用Tbale&SQL与Flink Elasticsearch Connector 连接器将数据写入Elasticsearch引擎的索引
示例环境
java.version: 1.8.x
flink.version: 1.11.1
elasticsearch:6.x
示例数据源 (项目码云下载)
Flink 系例 之 搭建开发环境与数据
示例模块 (pom.xml)
Flink 系例 之 TableAPI & SQL 与 示例模块
InsertToEs.java
package com.flink.examples.elasticsearch;
import org.apache.flink.streaming.api.TimeCharacteristic;
import org.apache.flink.streaming.api.environment.StreamExecutionEnvironment;
import org.apache.flink.table.api.EnvironmentSettings;
import org.apache.flink.table.api.StatementSet;
import org.apache.flink.table.api.TableResult;
import org.apache.flink.table.api.bridge.java.StreamTableEnvironment;
/**
* @Description 使用Tbale&SQL与Flink Elasticsearch连接器将数据写入Elasticsearch引擎的索引
*/
public class InsertToEs {
/**
* Apache Flink 有两种关系型 API 来做流批统一处理:Table API 和 SQL。
* 参考官方:https://ci.apache.org/projects/flink/flink-docs-release-1.11/zh/dev/table/connectors/elasticsearch.html
*/
//参见属性配置类:ElasticsearchValidator
static String table_sql = "CREATE TABLE my_users (\n" +
" user_id STRING,\n" +
" user_name STRING,\n" +
" uv BIGINT,\n" +
" pv BIGINT,\n" +
" PRIMARY KEY (user_id) NOT ENFORCED\n" +
") WITH (\n" +
" 'connector.type' = 'elasticsearch',\n" +
" 'connector.version' = '6',\n" +
" 'connector.property-version' = '1', \n" +
" 'connector.hosts' = 'http://192.168.110.35:9200',\n" +
" 'connector.index' = 'users',\n" +
" 'connector.document-type' = 'doc',\n" +
" 'format.type' = 'json',\n" +
" 'update-mode'='append' -- append|upsert\n" +
")";
public static void main(String[] args) {
//构建StreamExecutionEnvironment
StreamExecutionEnvironment env = StreamExecutionEnvironment.getExecutionEnvironment();
//默认流时间方式
env.setStreamTimeCharacteristic(TimeCharacteristic.ProcessingTime);
//构建EnvironmentSettings 并指定Blink Planner
EnvironmentSettings bsSettings = EnvironmentSettings.newInstance().useBlinkPlanner().inStreamingMode().build();
//构建StreamTableEnvironment
StreamTableEnvironment tEnv = StreamTableEnvironment.create(env, bsSettings);
//注册kafka数据维表
tEnv.executeSql(table_sql);
//Elasticsearch connector 目前只支持了 sink,不支持 source 。不能SELECT elasticsearch table,因此只能通过insert的方式提交数据;
String sql = "insert into my_users (user_id,user_name,uv,pv) values('10003','tom',31,10)";
// TableResult tableResult = tEnv.executeSql(sql);
//第二种方式:声明一个操作集合来执行sql
StatementSet stmtSet = tEnv.createStatementSet();
stmtSet.addInsertSql(sql);
TableResult tableResult = stmtSet.execute();
tableResult.print();
}
}
打印结果
+-------------------------------------------+
| default_catalog.default_database.my_users |
+-------------------------------------------+
| -1 |
+-------------------------------------------+
1 row in set
感谢各位的阅读,以上就是“怎么使用Flink TableAPI和SQL /Elasticsearch”的内容了,经过本文的学习后,相信大家对怎么使用Flink TableAPI和SQL /Elasticsearch这一问题有了更深刻的体会,具体使用情况还需要大家实践验证。这里是亿速云,小编将为大家推送更多相关知识点的文章,欢迎关注!
亿速云「云服务器」,即开即用、新一代英特尔至强铂金CPU、三副本存储NVMe SSD云盘,价格低至29元/月。点击查看>>
免责声明:本站发布的内容(图片、视频和文字)以原创、转载和分享为主,文章观点不代表本网站立场,如果涉及侵权请联系站长邮箱:is@yisu.com进行举报,并提供相关证据,一经查实,将立刻删除涉嫌侵权内容。
原文链接:https://my.oschina.net/u/437309/blog/4919870