温馨提示×

温馨提示×

您好,登录后才能下订单哦!

密码登录×
登录注册×
其他方式登录
点击 登录注册 即表示同意《亿速云用户服务条款》

Python 中闭包概念是什么

发布时间:2021-07-06 12:01:40 来源:亿速云 阅读:120 作者:chen 栏目:编程语言

本篇内容介绍了“Python 中闭包概念是什么”的有关知识,在实际案例的操作过程中,不少人都会遇到这样的困境,接下来就让小编带领大家学习一下如何处理这些情况吧!希望大家仔细阅读,能够学有所成!


 

概要

计算机中有些英文专业词汇,字面直译,难免因缺少上下文而显得苍白拗口,须得多方铺垫,方能味得古怪下面的原理。闭包(closure)便是一个这样牵扯了许多上下文的概念,包括编程语言最基本的绑定(binding),环境(environments),变量作用域(scope)以及函数是第一等公民(function as the first-class)等等。

 

Binding(绑定)

在Python中,binding(绑定) 是编程语言最基本的抽象手法,它将一个值绑定到一个变量上,并且稍后可以引用或者修改该变量。下面是几种不同层次的绑定,每组语句在运行时将一个名字与对应值绑定到其定义所在的环境中。

  • 将名字绑定到一块内存,通过赋值语句实现,当然函数调用时,形参和实参结合也是绑定:
In [1]: square = 4
 
  • 将名字绑定到一组复合运算,即     函数定义,利用     def 关键字实现:
In [1]: def square(x):
            return x*x
 
  • 将名字绑定到一个数据集合,即     类定义,使用     class 实现:
In [1]: class square:
            def __init__(self, x):
                self.x = x

            def value(self):
                return self.x * self.x
 

依照执行顺序,同名多次绑定,后面会覆盖前面

In [1]: square = 3

In [2]: square
Out[2]: 3

In [3]: def square(x):
   ...:     return x * x
   ...:
   ...:

In [4]: square
Out[4]: <function __main__.square(x)>

In [5]: class square:
   ...:     def __init__(self, x):
   ...:         self.x = x
   ...:

In [6]: square
Out[6]: __main__.square
 

说这些都是抽象,是因为它们提供了对数据、复合操作或数据集合的封装手段,即将一个名称与复杂的数据或逻辑进行捆绑,使调用者不用关心其实现细节,并可以据此来构建更复杂的工程。可以说绑定是编程的基石。

回到本文的主题上来,闭包是对一组复合语句的抽象,也就是函数,只不过是一种特殊的函数,至于这个特殊性在哪,这里先卖个关子,等稍后引入更多概念后再进行阐述。

 

Scope (作用域)

scope(作用域),顾名思义,也就是某个binding 能罩多大的范围,或者说可以在多大范围内访问的到一个变量。每个函数定义会生成一个局部定义域。

Python,和大多数编程语言一样,使用的是静态作用域(static scoping,有时也称 lexical scoping)规则。在函数嵌套定义的时候,内层函数内可以访问外层函数的变量值。因此你可以把作用域想象成一个容器,即它是可以嵌套的,并且内层作用域会扩展外层作用域,而最外层作用域即全局作用域。

上一小节提到了,多次同名绑定,后面会覆盖先前,其实有隐含前提:在同一作用域内。如果是嵌套作用域,其实是隐藏的关系,内层函数的变量定义会遮蔽外层函数同一名字定义,但是在外层作用域中,该变量仍是原值:

In [16]: a = 4

In [17]: def outer(): 
    ...:     a = 5
    ...:     print(a)
    ...:     def inner():
    ...:         a = 6
    ...:         print(a)
    ...:     inner()
    ...:     print(a)
    ...:

In [18]: outer()
5
6
5

In [19]: print(a)
4
 

作用域其实也可以从另一个角度理解,即我们在某个环境(environment)中,在确定一个name binding 值的时候,会从最内层作用域顺着往外找,找到的第一个该名字 binding 的对应的值即为该 name 引用到的值。

需要强调的时候,函数的嵌套定义会引起定义域的嵌套,或者说环境扩展(内层扩展外层)关系。类的定义又稍有不同,class 定义会引入新的 namespace(命名空间),命名空间和作用域是常拿来对比的概念,但这里按下不表,感兴趣的可以自己去查查资料。

说到这里,要提一下,一个常被说起的反直觉例子:

In [50]: a = 4

In [51]: def test():
    ...:     print(a) # 这里应该输出什么?
    ...:     a = 5
    ...:

In [52]: test()
---------------------------------------------------------------------------
UnboundLocalError                         
Traceback (most recent call last)
<ipython-input-52-fbd55f77ab7c> in <module>()
----> 1 test()

<ipython-input-51-200f78e91a1b> in test()
      1 def test():
----> 2     print(a)
      3     a = 5
      4

UnboundLocalError: local variable 'a' referenced before assignment
 

想象中,上面 print 处应该输出 4 或者 5 才对,为什么会报错呢?这是因为 test 函数在被解释器解析的时候,分词器会扫一遍 test 函数定义中的所有 token(符号),看到赋值语句 a=5 的存在,就会明确 a 是一个局部变量,因此不会输出 4。而在执行到 print(a) 的时候,在局部环境中,a 还未被binding,因此会报 UnboundLocalError

稍微扩展说明一下,虽然 Python 是解释执行的,即输入一句,解释一句,执行一句。但是对于代码块(即头部语句,冒号与其关联的缩进块所构成的复合语句(compound sentences),常见的有函数定义,类定义,循环语句等等)来说,还是会整体先扫一遍的。

 

First-Class Function(函数是第一等公民)

一般来说,组成编程语言的元素,如变量、函数和类,会被设定不同的限制,而具有最少限制的元素,被我们称为该编程语言中的一等公民。而一等公民最常见的特权有:

  1. 可以被     绑定到名字上
  2. 可以作为参数在函数中传递
  3. 可以作为返回值被函数作为结果返回
  4. 可以被包含在其他数据结构中

套用到 Python 中的函数,即一个函数可以被赋值给某个变量,可以被其他函数接收和返回,可以定义在其他函数中(即嵌套定义):

In [32]: def test():
    ...:     print('hello world')
    ...:

In [33]: t = test # 赋值给变量

In [34]: t()
hello world

In [35]: def wrapper(func):
    ...:     print('wrapper')
    ...:     func()
    ...:

In [36]: wrapper(t) # 作为参数传递
wrapper
hello world

In [37]: def add_num(a): 
    ...:     def add(b): # 嵌套定义
    ...:         return a + b
    ...:     return add # 作为函数的返回值
    ...:
    ...:

In [38]: add5 = add_num(5)

In [39]: add5(4)
Out[39]: 9
 

并不是在所有语言中,函数都是一等公民,比如 Java8 以前的 Java,上面四项权利 Java7 中的函数后几项都没有。使用函数作为第一等公民的做法,我们成为函数式编程。在这个大数据时代,由于对并发的友好性,传统过程式语言(比如 Cpp、Java)都在新版本上逐渐支持函数式编程范式。

在这里,能够操作其他函数的函数(即以其他函数作为参数或者返回值的函数),叫做高阶函数。高阶函数使得语言的表达能力大大增强,但同时,也增加了编程复杂度。

 

Stack Call(栈式调用)

每个函数调用,会在环境中产生一个 frame栈帧),并且在栈帧中会进行一些绑定,然后压入函数调用栈中。在函数调用结束时,栈帧会被弹出,其中所进行的绑定也被解除,即垃圾回收,对应的局部作用域也随之消亡。

In [47]: def test():
    ...:     x = 4
    ...:     print(x)
    ...:

In [48]: test()
4

In [49]: x
---------------------------------------------------------------------------
NameError                                 
Traceback (most recent call last)
<ipython-input-49-6fcf9dfbd479> in <module>()
----> 1 x

NameError: name 'x' is not defined
 

即在调用结束后,局部定义的变量  x 在外边是访问不到的。但是如之前例子中,返回的 add 函数却引用了已经调用结束的 add_num 中的变量 a,怎么解释这种现象呢?可以记住一条,也是之前提到过的:

函数嵌套定义时,内部定义的函数所在的环境会自动扩展其定义所在环境
 

因此在外部函数返回后,返回的内部函数依然维持了其定义时的扩展环境,也可以理解为由于内部函数引用的存在,外部函数的环境中所有的绑定并没有被回收。

 

Closure(闭包)

千呼万唤始出来,以为是高潮,其实已结束。

闭包就是建立在前面的这些概念上的,上面提到的某个例子:

In [37]: def add_num(a): 
    ...:     def add(b): # 嵌套定义
    ...:         return a + b
    ...:     return add # 作为函数的返回值
    ...:
    ...:

In [38]: add5 = add_num(5)

In [39]: add5(4)
Out[39]: 9
 

其实就是闭包。捡起之前伏笔,给出我对闭包的一个理解:它是一种高阶函数,并且外层函数(例子中的add_num)将其内部定义的函数(add)作为返回值返回,同时由于返回的内层函数扩展了外层函数的环境,也就是对其产生了一个引用,那么在调用返回的内部函数(add5)的时候,能够引用到其(add)定义时的外部环境(在例子中,即 a 的值)。

结语

说了这么多,其实只是在逻辑层面或者说抽象层面去解释闭包是什么,常跟哪些概念纠缠在一起。但这些都没有真正触到其本质,或者说依然是空中楼阁,如果想要真正理解闭包,可以去详细了解下 Python 的解释执行机制,当然,那就是编译原理的范畴了。

“Python 中闭包概念是什么”的内容就介绍到这里了,感谢大家的阅读。如果想了解更多行业相关的知识可以关注亿速云网站,小编将为大家输出更多高质量的实用文章!

向AI问一下细节

免责声明:本站发布的内容(图片、视频和文字)以原创、转载和分享为主,文章观点不代表本网站立场,如果涉及侵权请联系站长邮箱:is@yisu.com进行举报,并提供相关证据,一经查实,将立刻删除涉嫌侵权内容。

AI