本篇内容介绍了“JVM性能调优中常用参数有哪些”的有关知识,在实际案例的操作过程中,不少人都会遇到这样的困境,接下来就让小编带领大家学习一下如何处理这些情况吧!希望大家仔细阅读,能够学有所成!
-XX 参数被称为不稳定参数,这么叫是因为此类参数的设置很容易引起JVM 性能上的差异,使JVM 存在极大的不稳定性。如果此类参数设置合理将大大提高JVM 的性能及稳定性。
-XX:+[param], '+'表示启用该选项
-XX:-[param], '-'表示关闭该选项
-XX:[param]= 给选项设置一个数字类型值 ,可跟随单位,例如:'m’或’M’表示兆字节;'k’或’K’千字节;'g’或’G’千兆字节。32K与32768是相同大小的。
-XX:[param]= 给选项设置一个字符串类型值,通常用于指定一个文件、路径或一系列命令列表。
例如:-XX:HeapDumpPath=./dump.core
配置:-Xmx4g –Xms4g –Xmn1200m –Xss512k -XX:NewRatio=4 -XX:SurvivorRatio=8 -XX:PermSize=100m -XX:MaxPermSize=256m -XX:MaxTenuringThreshold=15
-Xmx4g:堆内存最大值为4GB。(简写设置整个堆内存大小=4G) 可以不用作为数值设置大小:-XX:[param]=4g
,最大堆大小,默认物理内存的1/4
-Xms4g:初始化堆内存大小为4GB 。初始堆大小,默认物理内存的1/64。
-Xmn1200m:设置年轻代大小为1200MB。增大年轻代后,将会减小年老代大小。此值对系统性能影响较大,Sun官方推荐配置为整个堆的3/8。
-Xss512k:设置每个线程的堆栈大小。JDK5.0以后每个线程堆栈大小为1MB,以前每个线程堆栈大小为256K。应根据应用线程所需内存大小进行调整。在相同物理内存下,减小这个值能生成更多的线程。但是操作系统对一个进程内的线程数还是有限制的,不能无限生成,经验值在3000~5000左右。如果过小还可能会造成stackOverflow
-XX:NewRatio=4:设置年轻代(包括Eden和两个Survivor区)与年老代的比值(除去持久代)。设置为4,则年轻代与年老代所占比值为1:4,年轻代占整个堆栈的1/5
-XX:SurvivorRatio=8:设置年轻代中Eden区与Survivor区的大小比值。设置为8,则两个Survivor区与一个Eden区的比值为2:8,一个Survivor区占整个年轻代的1/10
-XX:PermSize=100m:初始化永久代大小为100MB。**永久代初始值,默认为物理内存的1/64 **
-XX:MaxPermSize=256m:设置持久代大小为256MB。**永久代最大值,默认为物理内存的1/4 **
-XX:MaxTenuringThreshold=15:设置垃圾最大年龄。如果设置为0的话,则年轻代对象不经过Survivor区,直接进入年老代。
对于年老代比较多的应用,可以提高效率。如果将此值设置为一个较大值,则年轻代对象会在Survivor区进行多次复制,这样可以增加对象再年轻代的存活时间,增加在年轻代即被回收的概论。。
(但是大对象一定要考虑清楚是否要设置一个合适的阈值,否则会出现大对象复制,造成问题。)
首先介绍一下新生代、老年代。所谓的新生代和老年代是针对于分代收集算法来定义的,新生代又分为Eden和Survivor两个区。加上老年代就这三个区。数据会首先分配到Eden区 当中(当然也有特殊情况,如果是大对象那么会直接放入到老年代(大对象是指需要大量连续内存空间的java对象)。),当Eden没有足够空间的时候就会 触发jvm发起一次Minor GC。如果对象经过一次Minor GC还存活,并且又能被Survivor空间接受,那么将被移动到Survivor空 间当中。并将其年龄设为1,对象在Survivor每熬过一次Minor GC,年龄就加1,当年龄达到一定的程度(默认为15)时,就会被晋升到老年代 中了,当然晋升老年代的年龄是可以设置的。
JVM中最大堆大小有三方面限制:
相关操作系统的数据模型(32-bt还是64-bit)限制;
系统的可用虚拟内存限制;
系统的可用物理内存寻址限制:32位系统一般限制1.5G~2G;64bit系统对内存无限制;
-Xmx3550m -Xms3550m -Xmn2g -Xss128k
-Xmx3550m:设置JVM最大可用内存为3550M。
-Xms3550m:设置JVM最小内存为3550m。此值可以设置与-Xmx相同,以避免每次垃圾回收完成后JVM重新分配内存。
-Xmn2g:设置年轻代大小为2G。整个JVM内存大小=年轻代大小 + 年老代大小 + 持久代大小。持久代一般固定大小为64m,所以增大年轻代后,将会减小年老代大小。此值对系统性能影响较大,Sun官方推荐配置为整个堆的3/8。
-Xss128k:设置每个线程的堆栈大小。JDK5.0以后每个线程堆栈大小为1M,以前每个线程堆栈大小为256K。
-Xmx3550m -Xms3550m -Xss128k -XX:NewRatio=4(新生区与老年区的比重为 1:5) -XX:SurvivorRatio=4(伊甸区与幸存者区(单个)比重 1:6) -XX:MaxPermSize=16m -XX:MaxTenuringThreshold=0
-XX:NewRatio=4:设置年轻代(包括Eden和两个Survivor区)与年老代的比值(除去持久代)。设置为4,则年轻代与年老代所占比值为1:4,年轻代占整个堆栈的1/5
-XX:SurvivorRatio=4:设置年轻代中Eden区与Survivor区的大小比值。设置为4,则两个Survivor区与一个Eden区的比值为2:4,一个Survivor区占整个年轻代的1/6
-XX:MaxPermSize=16m:设置持久代大小为16m。
-XX:MaxTenuringThreshold=0:设置垃圾最大年龄。如果设置为0的话,则年轻代对象不经过Survivor区,直接进入年老代。对于年老代比较多的应用,可以提高效率。如果将此值设置为一个较大值,则年轻代对象会在Survivor区进行多次复制,这样可以增加对象在年轻代的存活时间,增加在年轻代即被回收的概论。
JVM给了三种选择:串行收集器、并行收集器、并发收集器,但是串行收集器只适用于小数据量的情况,所以这里的选择主要针对并行收集器和并发收集器。
默认情况下,JDK5.0以前都是使用串行收集器,如果想使用其他收集器需要在启动时加入相应参数。JDK5.0以后,JVM会根据当前系统配置进行判断。
如上文所述,并行收集器主要以到达一定的吞吐量为目标,适用于科学技术和后台处理等。 典型配置:
java -Xmx3800m -Xms3800m -Xmn2g -Xss128k -XX:+UseParallelGC -XX:ParallelGCThreads=20
-XX:+UseParallelGC:** 选择垃圾Scavenge收集器为并行收集器,此配置仅对年轻代有效**。即上述配置下,年轻代使用并发Scavenge收集,而年老代仍旧使用串行收集。
-XX:ParallelGCThreads=20:配置并行收集器的线程数,即:同时多少个线程一起进行垃圾回收。此值最好配置与处理器数目相等。
java -Xmx3550m -Xms3550m -Xmn2g -Xss128k -XX:+UseParallelGC -XX:ParallelGCThreads=20 - - XX:+UseParallelOldGC
-XX:+UseParallelOldGC:配置年老代垃圾收集方式为并行收集。JDK6.0支持对年老代并行收集。
java -Xmx3550m -Xms3550m -Xmn2g -Xss128k -XX:+UseParallelGC -XX:MaxGCPauseMillis=100
-XX:MaxGCPauseMillis=100:设置每次年轻代垃圾回收的最长时间(单位为毫秒),如果无法满足此时间,JVM会自动调整年轻代大小,以满足此值。(主要调整的是伊甸区,减少回收伊甸区的内存数量,从而控制回收时间)
java -Xmx3550m -Xms3550m -Xmn2g -Xss128k -XX:+UseParallelGC -XX:MaxGCPauseMillis=100 -XX:+UseAdaptiveSizePolicy
-XX:+UseAdaptiveSizePolicy:设置此选项后,并行收集器会自动选择年轻代区大小和相应的Survivor区比例,以达到目标系统规定的最低相应时间或者收集频率等,此值建议使用并行收集器时,一直打开。
如上文所述,并发收集器主要是保证系统的响应时间,减少垃圾收集时的停顿时间。适用于应用服务器、电信领域等。
java -Xmx3550m -Xms3550m -Xmn2g -Xss128k -XX:ParallelGCThreads=20 -XX:+UseConcMarkSweepGC -XX:+UseParNewGC
-XX:+UseConcMarkSweepGC:设置年老代为并发收集。测试中配置这个以后,-XX:NewRatio=4的配置失效了,原因不明。所以,此时年轻代大小最好用-Xmn设置。
-XX:+UseParNewGC:设置年轻代为并行收集。可与CMS收集同时使用。JDK5.0以上,JVM会根据系统配置自行设置,所以无需再设置此值。
java -Xmx3550m -Xms3550m -Xmn2g -Xss128k -XX:+UseConcMarkSweepGC -XX:CMSFullGCsBeforeCompaction=5 -XX:+UseCMSCompactAtFullCollection
-XX:CMSFullGCsBeforeCompaction:由于并发收集器不对内存空间进行压缩、整理,所以运行一段时间以后会产生“碎片”,使得运行效率降低。此值设置运行多少次GC以后对内存空间进行压缩、整理。
-XX:+UseCMSCompactAtFullCollection:打开对年老代的压缩。可能会影响性能,但是可以消除碎片
-XX:GCTimeRatio:设置垃圾收集时间占总时间的比率 ,0<n<100的整数; 相当于设置吞吐量大小。 垃圾收集执行时间占应用程序执行时间的比例的计算方法是:1 / (1 + n)
例如,选项-XX:GCTimeRatio=19,设置了垃圾收集时间占总时间的5%--1/(1+19); 默认值是1%--1/(1+99),即n=99;垃圾收集所花费的时间是年轻一代和老年代收集的总时间;
JVM提供了大量命令行参数,打印信息,供调试使用。主要有以下一些:
-XX:+PrintGC
输出形式:
[GC 118250K->113543K(130112K), 0.0094143 secs] [Full GC 121376K->10414K(130112K), 0.0650971 secs]
-XX:+PrintGCDetails
输出形式:
[GC [DefNew: 8614K->781K(9088K), 0.0123035 secs] 118250K->113543K(130112K), 0.0124633 secs] [GC [DefNew: 8614K->8614K(9088K), 0.0000665 secs] [Tenured: 112761K->10414K(121024K), 0.0433488 secs] 121376K->10414K(130112K), 0.0436268 secs]
-XX:+PrintGCTimeStamps -XX:+PrintGC:
PrintGCTimeStamps 可与上面两个混合使用
输出形式:11.851: [GC 98328K->93620K(130112K), 0.0082960 secs]
-XX:+PrintGCApplicationConcurrentTime:打印每次垃圾回收前,程序未中断的执行时间。可与上面混合使用
输出形式:Application time: 0.5291524 seconds
-XX:+PrintGCApplicationStoppedTime:打印垃圾回收期间程序暂停的时间。可与上面混合使用
输出形式:Total time for which application threads were stopped: 0.0468229 seconds
-XX:PrintHeapAtGC:打印GC前后的详细堆栈信息
输出形式:
34.702: [GC {Heap before gc invocations=7: def new generation total 55296K, used 52568K [0x1ebd0000, 0x227d0000, 0x227d0000) eden space 49152K, 99% used [0x1ebd0000, 0x21bce430, 0x21bd0000) from space 6144K, 55% used [0x221d0000, 0x22527e10, 0x227d0000) to space 6144K, 0% used [0x21bd0000, 0x21bd0000, 0x221d0000) tenured generation total 69632K, used 2696K [0x227d0000, 0x26bd0000, 0x26bd0000) the space 69632K, 3% used [0x227d0000, 0x22a720f8, 0x22a72200, 0x26bd0000) compacting perm gen total 8192K, used 2898K [0x26bd0000, 0x273d0000, 0x2abd0000) the space 8192K, 35% used [0x26bd0000, 0x26ea4ba8, 0x26ea4c00, 0x273d0000) ro space 8192K, 66% used [0x2abd0000, 0x2b12bcc0, 0x2b12be00, 0x2b3d0000) rw space 12288K, 46% used [0x2b3d0000, 0x2b972060, 0x2b972200, 0x2bfd0000) 34.735: [DefNew: 52568K->3433K(55296K), 0.0072126 secs] 55264K->6615K(124928K)Heap after gc invocations=8: def new generation total 55296K, used 3433K [0x1ebd0000, 0x227d0000, 0x227d0000) eden space 49152K, 0% used [0x1ebd0000, 0x1ebd0000, 0x21bd0000) from space 6144K, 55% used [0x21bd0000, 0x21f2a5e8, 0x221d0000) to space 6144K, 0% used [0x221d0000, 0x221d0000, 0x227d0000) tenured generation total 69632K, used 3182K [0x227d0000, 0x26bd0000, 0x26bd0000) the space 69632K, 4% used [0x227d0000, 0x22aeb958, 0x22aeba00, 0x26bd0000) compacting perm gen total 8192K, used 2898K [0x26bd0000, 0x273d0000, 0x2abd0000) the space 8192K, 35% used [0x26bd0000, 0x26ea4ba8, 0x26ea4c00, 0x273d0000) ro space 8192K, 66% used [0x2abd0000, 0x2b12bcc0, 0x2b12be00, 0x2b3d0000) rw space 12288K, 46% used [0x2b3d0000, 0x2b972060, 0x2b972200, 0x2bfd0000) } , 0.0757599 secs]
-Xloggc:filename:与上面几个配合使用,把相关日志信息记录到文件以便分析。
-Xms:初始堆大小
-Xmx:最大堆大小
-XX:NewSize=n:设置年轻代大小
-XX:NewRatio=n:设置年轻代和年老代的比值。如:为3,表示年轻代与年老代比值为1:3,年轻代占整个年轻代年老代和的1/4
-XX:SurvivorRatio=n:年轻代中Eden区与两个Survivor区的比值。注意Survivor区有两个。如:3,表示Eden:Survivor=3:2,一个Survivor区占整个年轻代的1/5
-XX:MaxPermSize=n:设置持久代大小
-XX:+UseSerialGC:设置串行收集器
-XX:+UseParallelGC:设置并行Scavege收集器
-XX:+UseParalledlOldGC:设置并行年老代收集器
-XX:+UseConcMarkSweepGC:设置并发收集器
-XX:+PrintGC
-XX:+PrintGCDetails
-XX:+PrintGCTimeStamps
-Xloggc:filename
-XX:ParallelGCThreads=n:设置并行Scavege收集器收集时使用的CPU数。并行收集线程数。
-XX:MaxGCPauseMillis=n:设置并行收集最大暂停时间
-XX:GCTimeRatio=n:设置垃圾回收时间占程序运行时间的百分比。公式为1/(1+n)
-XX:+CMSIncrementalMode:设置为增量模式。适用于单CPU情况。 -XX:ParallelGCThreads=n:设置并发收集器年轻代收集方式为并行收集时,使用的CPU数。并行收集线程数。
“JVM性能调优中常用参数有哪些”的内容就介绍到这里了,感谢大家的阅读。如果想了解更多行业相关的知识可以关注亿速云网站,小编将为大家输出更多高质量的实用文章!
免责声明:本站发布的内容(图片、视频和文字)以原创、转载和分享为主,文章观点不代表本网站立场,如果涉及侵权请联系站长邮箱:is@yisu.com进行举报,并提供相关证据,一经查实,将立刻删除涉嫌侵权内容。