这篇文章主要讲解了“PageRank怎么使用”,文中的讲解内容简单清晰,易于学习与理解,下面请大家跟着小编的思路慢慢深入,一起来研究和学习“PageRank怎么使用”吧!
PageRank是执行多次连接的一个迭代算法,因此它是RDD分区操作的很好demo,算法维护两个数据集
package com.sowhat.sparkimport org.apache.spark.rdd.RDDimport org.apache.spark.{HashPartitioner, SparkConf, SparkContext}/** * links = (pageID,LinkList) * ranks = (pageID,rank) **/object MyPageRank { def main(args: Array[String]): Unit = { val conf: SparkConf = new SparkConf().setMaster("local[*]").setAppName("pagerank") //创建SparkContext,该对象是提交spark App的入口 val sc = new SparkContext(conf) val links: RDD[(String, Seq[String])] = sc.objectFile[(String, Seq[String])]("filepwd").partitionBy(new HashPartitioner(100)).persist() var ranks: RDD[(String, Double)] = links.mapValues(x => 1.0) for (i <- 0 until 10) { val totalRDD: RDD[(String, (Seq[String], Double))] = links.join(ranks) val contributions: RDD[(String, Double)] = totalRDD.flatMap( { case (pageID, (links, rank)) => links.map(dest => (dest, rank / links.size)) } ) ranks = contributions.reduceByKey(_ + _).mapValues(v => 0.15 + 0.85 * v) } ranks.saveAsTextFile("ranks") }}
算法从ranksRDD的每个元素的值初始化为1.0开始,然后每次迭代都都不断的更新ranks值,其中主要优化部分如下。
建议
:为最大化分区相关优化潜在作用,在无需更改元素键的时候尽量使用 mapValues 或 flatMapValues。
本文使用 mdnice 排版
感谢各位的阅读,以上就是“PageRank怎么使用”的内容了,经过本文的学习后,相信大家对PageRank怎么使用这一问题有了更深刻的体会,具体使用情况还需要大家实践验证。这里是亿速云,小编将为大家推送更多相关知识点的文章,欢迎关注!
亿速云「云服务器」,即开即用、新一代英特尔至强铂金CPU、三副本存储NVMe SSD云盘,价格低至29元/月。点击查看>>
免责声明:本站发布的内容(图片、视频和文字)以原创、转载和分享为主,文章观点不代表本网站立场,如果涉及侵权请联系站长邮箱:is@yisu.com进行举报,并提供相关证据,一经查实,将立刻删除涉嫌侵权内容。
原文链接:https://my.oschina.net/u/4511602/blog/4485105