如何使用Python实现Hadoop MapReduce程序,相信很多没有经验的人对此束手无策,为此本文总结了问题出现的原因和解决方法,通过这篇文章希望你能解决这个问题。
笔者的机器运行效果如下(输入数据是find的帮助手册,和笔者预期一样,the是最多的):
--------------------------------------以下是原帖---------------------------------
在这个实例中,我将会向大家介绍如何使用Python 为 Hadoop编写一个简单的MapReduce
程序。
尽管Hadoop 框架是使用Java编写的但是我们仍然需要使用像C++、Python等语言来实现 Hadoop程序。尽管Hadoop官方网站给的示例程序是使用Jython编写并打包成Jar文件,这样显然造成了不便,其实,不一定非要这样来实现,我们可以使用Python与Hadoop 关联进行编程,看看位于/src/examples/python/WordCount.py 的例子,你将了解到我在说什么。
我们想要做什么?
我们将编写一个简单的 MapReduce 程序,使用的是C-Python,而不是Jython编写后打包成jar包的程序。
我们的这个例子将模仿 WordCount 并使用Python来实现,例子通过读取文本文件来统计出单词的出现次数。结果也以文本形式输出,每一行包含一个单词和单词出现的次数,两者中间使用制表符来想间隔。
先决条件
编写这个程序之前,你学要架设好Hadoop 集群,这样才能不会在后期工作抓瞎。如果你没有架设好,那么在后面有个简明教程来教你在Ubuntu Linux 上搭建(同样适用于其他发行版linux、unix)
如何使用Hadoop Distributed File System (HDFS)在Ubuntu Linux 建立单节点的 Hadoop 集群
如何使用Hadoop Distributed File System (HDFS)在Ubuntu Linux 建立多节点的 Hadoop 集群
Python的MapReduce代码
使用Python编写MapReduce代码的技巧就在于我们使用了 HadoopStreaming 来帮助我们在Map 和 Reduce间传递数据通过STDIN (标准输入)和STDOUT (标准输出).我们仅仅使用Python的sys.stdin来输入数据,使用sys.stdout输出数据,这样做是因为HadoopStreaming会帮我们办好其他事。这是真的,别不相信!
将下列的代码保存在/home/hadoop/mapper.py中,他将从STDIN读取数据并将单词成行分隔开,生成一个列表映射单词与发生次数的关系:
注意:要确保这个脚本有足够权限(chmod +x /home/hadoop/mapper.py)。
#!/usr/bin/env python import sys # input comes from STDIN (standard input) for line in sys.stdin: # remove leading and trailing whitespace line = line.strip() # split the line into words words = line.split() # increase counters for word in words: # write the results to STDOUT (standard output); # what we output here will be the input for the # Reduce step, i.e. the input for reducer.py # # tab-delimited; the trivial word count is 1 print '%s\\t%s' % (word, 1)
在这个脚本中,并不计算出单词出现的总数,它将输出 "<word> 1">
将代码存储在/home/hadoop/reducer.py 中,这个脚本的作用是从mapper.py 的STDIN中读取结果,然后计算每个单词出现次数的总和,并输出结果到STDOUT。
同样,要注意脚本权限:chmod +x /home/hadoop/reducer.py
#!/usr/bin/env python from operator import itemgetter import sys # maps words to their counts word2count = {} # input comes from STDIN for line in sys.stdin: # remove leading and trailing whitespace line = line.strip() # parse the input we got from mapper.py word, count = line.split('\\t', 1) # convert count (currently a string) to int try: count = int(count) word2count[word] = word2count.get(word, 0) + count except ValueError: # count was not a number, so silently # ignore/discard this line pass # sort the words lexigraphically; # # this step is NOT required, we just do it so that our # final output will look more like the official Hadoop # word count examples sorted_word2count = sorted(word2count.items(), key=itemgetter(0)) # write the results to STDOUT (standard output) for word, count in sorted_word2count: print '%s\\t%s'% (word, count)
测试你的代码(cat data | map | sort | reduce)
我建议你在运行MapReduce job测试前尝试手工测试你的mapper.py 和 reducer.py脚本,以免得不到任何返回结果
这里有一些建议,关于如何测试你的Map和Reduce的功能:
——————————————————————————————————————————————
\r\n
# very basic test hadoop@ubuntu:~$ echo "foo foo quux labs foo bar quux" | /home/hadoop/mapper.py foo 1 foo 1 quux 1 labs 1 foo 1 bar 1 —————————————————————————————————————————————— hadoop@ubuntu:~$ echo "foo foo quux labs foo bar quux" | /home/hadoop/mapper.py | sort | /home/hadoop/reducer.py bar 1 foo 3 labs 1 —————————————————————————————————————————————— # using on[object Object]e of the ebooks as example input # (see below on where to get the ebooks) hadoop@ubuntu:~$ cat /tmp/gutenberg/20417-8.txt | /home/hadoop/mapper.py The 1 Project 1 Gutenberg 1 EBook 1 of 1 [...] (you get the idea) quux 2 quux 1
—————————————————————————————————————————————— 为了这个例子,我们将需要三种电子书:
下载他们,并使用us-ascii编码存储 解压后的文件,保存在临时目录,比如/tmp/gutenberg.
hadoop@ubuntu:~$ ls -l /tmp/gutenberg/ total 3592 -rw-r--r-- 1 hadoop hadoop 674425 2007-01-22 12:56 20417-8.txt -rw-r--r-- 1 hadoop hadoop 1423808 2006-08-03 16:36 7ldvc10.txt -rw-r--r-- 1 hadoop hadoop 1561677 2004-11-26 09:48 ulyss12.txt hadoop@ubuntu:~$
在我们运行MapReduce job 前,我们需要将本地的文件复制到HDFS中: hadoop@ubuntu:/usr/local/hadoop$ bin/hadoop dfs -copyFromLocal /tmp/gutenberg gutenberg hadoop@ubuntu:/usr/local/hadoop$ bin/hadoop dfs -ls Found 1 items /user/hadoop/gutenberg <dir> hadoop@ubuntu:/usr/local/hadoop$ bin/hadoop dfs -ls gutenberg Found 3 items /user/hadoop/gutenberg/20417-8.txt <r 1> 674425 /user/hadoop/gutenberg/7ldvc10.txt <r 1> 1423808 /user/hadoop/gutenberg/ulyss12.txt <r 1> 1561677 现在,一切准备就绪,我们将在运行Python MapReduce job 在Hadoop集群上。像我上面所说的,我们使用的是 帮助我们传递数据在Map和Reduce间并通过STDIN和STDOUT,进行标准化输入输出。 hadoop@ubuntu:/usr/local/hadoop$ bin/hadoop jar contrib/streaming/hadoop-0.19.1-streaming.jar -mapper /home/hadoop/mapper.py -reducer /home/hadoop/reducer.py -input gutenberg/* -output gutenberg-output 在运行中,如果你想更改Hadoop的一些设置,如增加Reduce任务的数量,你可以使用“-hadoop@ubuntu:/usr/local/hadoop$ bin/hadoop jar contrib/streaming/hadoop-0.19.1-streaming.jar -mapper ... 一个重要的备忘是关于 这个任务将会读取HDFS目录下的HDFS目录下的 目录。 之前执行的结果如下: hadoop@ubuntu:/usr/local/hadoop$ bin/hadoop jar contrib/streaming/hadoop-0.19.1-streaming.jar -mapper /home/hadoop/mapper.py -reducer /home/hadoop/reducer.py -input gutenberg/* -output gutenberg-output additionalConfSpec_:null null=@@@userJobConfProps_.get(stream.shipped.hadoopstreaming packageJobJar: [/usr/local/hadoop-datastore/hadoop-hadoop/hadoop-unjar54543/] [] /tmp/streamjob54544.jar tmpDir=null [...] INFO mapred.FileInputFormat: Total input paths to process : 7 [...] INFO streaming.StreamJob: getLocalDirs(): [/usr/local/hadoop-datastore/hadoop-hadoop/mapred/local] [...] INFO streaming.StreamJob: Running job: job_200803031615_0021 [...] [...] INFO streaming.StreamJob: map 0% reduce 0% [...] INFO streaming.StreamJob: map 43% reduce 0% [...] INFO streaming.StreamJob: map 86% reduce 0% [...] INFO streaming.StreamJob: map 100% reduce 0% [...] INFO streaming.StreamJob: map 100% reduce 33% [...] INFO streaming.StreamJob: map 100% reduce 70% [...] INFO streaming.StreamJob: map 100% reduce 77% [...] INFO streaming.StreamJob: map 100% reduce 100% [...] INFO streaming.StreamJob: Job complete: job_200803031615_0021 [...] INFO streaming.StreamJob: Output: gutenberg-output hadoop@ubuntu:/usr/local/hadoop$ 正如你所见到的上面的输出结果,Hadoop 同时还提供了一个基本的WEB接口显示统计结果和信息。 当Hadoop集群在执行时,你可以使用浏览器访问 ,如图: 检查结果是否输出并存储在HDFS目录下的中: hadoop@ubuntu:/usr/local/hadoop$ bin/hadoop dfs -ls gutenberg-output Found 1 items /user/hadoop/gutenberg-output/part-00000 <r 1> 903193 2007-09-21 13:00 hadoop@ubuntu:/usr/local/hadoop$ 可以使用 命令检查文件目录 hadoop@ubuntu:/usr/local/hadoop$ bin/hadoop dfs -cat gutenberg-output/part-00000 "(Lo)cra" 1 "1490 1 "1498," 1 "35" 1 "40," 1 "A 2 "AS-IS". 2 "A_ 1 "Absoluti 1 [...] hadoop@ubuntu:/usr/local/hadoop$ 注意比输出,上面结果的(")符号不是Hadoop插入的。
看完上述内容,你们掌握如何使用Python实现Hadoop MapReduce程序的方法了吗?如果还想学到更多技能或想了解更多相关内容,欢迎关注亿速云行业资讯频道,感谢各位的阅读!
免责声明:本站发布的内容(图片、视频和文字)以原创、转载和分享为主,文章观点不代表本网站立场,如果涉及侵权请联系站长邮箱:is@yisu.com进行举报,并提供相关证据,一经查实,将立刻删除涉嫌侵权内容。