这篇文章主要介绍“怎么用PHP写Hadoop的MapReduce程序”,在日常操作中,相信很多人在怎么用PHP写Hadoop的MapReduce程序问题上存在疑惑,小编查阅了各式资料,整理出简单好用的操作方法,希望对大家解答”怎么用PHP写Hadoop的MapReduce程序”的疑惑有所帮助!接下来,请跟着小编一起来学习吧!
虽然Hadoop是用java写的,但是Hadoop提供了Hadoop流,Hadoop流提供一个API, 允许用户使用任何语言编写map函数和reduce函数.
Hadoop流动关键是,它使用UNIX标准流作为程序与Hadoop之间的接口。因此,任何程序只要可以从标准输入流中读取数据,并且可以把数据写入标准输出流中,那么就可以通过Hadoop流使用任何语言编写MapReduce程序的map函数和reduce函数。
例 如:bin/hadoop jar contrib/streaming/hadoop-streaming-0.20.203.0.jar -mapper /usr/local/hadoop/mapper.php -reducer /usr/local/hadoop/reducer.php -input test/* -output out4
Hadoop流引入的 包:hadoop-streaming-0.20.203.0.jar,Hadoop根目录下是没有hadoop-streaming.jar的,因为 streaming是一个contrib,所以要去contrib下面找,以hadoop-0.20.2为例,它在这里:
-input:指明输入hdfs文件的路径
-output:指明输出hdfs文件的路径
-mapper:指明map函数
-reducer:指明reduce函数
mapper.php文件,写入如下代码:
[php]
#!/usr/local/php/bin/php
<?php
$word2count = array();
// input comes from STDIN (standard input)
// You can this code :$stdin = fopen(“php://stdin”, “r”);
while (($line = fgets(STDIN)) !== false) {
// remove leading and trailing whitespace and lowercase
$line = strtolower(trim($line));
// split the line into words while removing any empty string
$words = preg_split('/\W/', $line, 0, PREG_SPLIT_NO_EMPTY);
// increase counters
foreach ($words as $word) {
$word2count[$word] += 1;
}
}
// write the results to STDOUT (standard output)
// what we output here will be the input for the
// Reduce step, i.e. the input for reducer.py
foreach ($word2count as $word => $count) {
// tab-delimited
echo $word, chr(9), $count, PHP_EOL;
}
?>
这段代码的大致意思是:把输入的每行文本中的单词找出来,并以”
hello 1
world 1″
这样的形式输出出来。
和之前写的PHP基本没有什么不同,对吧,可能稍微让你感到陌生有两个地方:
第一行的
[php]
告诉linux,要用#!/usr/local/php/bin/php这个程序作为以下代码的解释器。写过linux shell的人应该很熟悉这种写法了,每个shell脚本的第一行都是这样: #!/bin/bash, #!/usr/bin/python
#!/usr/local/php/bin/php
有了这一行,保存好这个文件以后,就可以像这样直接把mapper.php当作cat, grep一样的命令执行了:./mapper.php
到此,关于“怎么用PHP写Hadoop的MapReduce程序”的学习就结束了,希望能够解决大家的疑惑。理论与实践的搭配能更好的帮助大家学习,快去试试吧!若想继续学习更多相关知识,请继续关注亿速云网站,小编会继续努力为大家带来更多实用的文章!
免责声明:本站发布的内容(图片、视频和文字)以原创、转载和分享为主,文章观点不代表本网站立场,如果涉及侵权请联系站长邮箱:is@yisu.com进行举报,并提供相关证据,一经查实,将立刻删除涉嫌侵权内容。