这篇文章给大家介绍 基于Flume+Kafka+Spark-Streaming的实时流式处理过程是怎样的,内容非常详细,感兴趣的小伙伴们可以参考借鉴,希望对大家能有所帮助。
基于Flume+Kafka+Spark-Streaming的实时流式处理完整流程
1、环境准备,四台测试服务器
spark集群三台,spark1,spark2,spark3
kafka集群三台,spark1,spark2,spark3
zookeeper集群三台,spark1,spark2,spark3
日志接收服务器, spark1
日志收集服务器,redis (这台机器用来做redis开发的,现在用来做日志收集的测试,主机名就不改了)
日志收集流程:
日志收集服务器->日志接收服务器->kafka集群->spark集群处理
说明: 日志收集服务器,在实际生产中很有可能是应用系统服务器,日志接收服务器为大数据服务器中一台,日志通过网络传输到日志接收服务器,再入集群处理。
因为,生产环境中,往往网络只是单向开放给某台服务器的某个端口访问的。
Flume版本: apache-flume-1.5.0-cdh6.4.9 ,该版本已经较好地集成了对kafka的支持
2、日志收集服务器(汇总端)
配置flume动态收集特定的日志,collect.conf 配置如下:
# Name the components on this agent a1.sources = tailsource-1 a1.sinks = remotesink a1.channels = memoryChnanel-1 # Describe/configure the source a1.sources.tailsource-1.type = exec a1.sources.tailsource-1.command = tail -F /opt/modules/tmpdata/logs/1.log a1.sources.tailsource-1.channels = memoryChnanel-1 # Describe the sink a1.sinks.k1.type = logger # Use a channel which buffers events in memory a1.channels.memoryChnanel-1.type = memory a1.channels.memoryChnanel-1.keep-alive = 10 a1.channels.memoryChnanel-1.capacity = 100000 a1.channels.memoryChnanel-1.transactionCapacity = 100000 # Bind the source and sink to the channel a1.sinks.remotesink.type = avro a1.sinks.remotesink.hostname = spark1 a1.sinks.remotesink.port = 666 a1.sinks.remotesink.channel = memoryChnanel-1
日志实时监控日志后,通过网络avro类型,传输到spark1服务器的666端口上
启动日志收集端脚本:
bin/flume-ng agent --conf conf --conf-file conf/collect.conf --name a1 -Dflume.root.logger=INFO,console
3、日志接收服务器
配置flume实时接收日志,collect.conf 配置如下:
#agent section producer.sources = s producer.channels = c producer.sinks = r #source section producer.sources.s.type = avro producer.sources.s.bind = spark1 producer.sources.s.port = 666 producer.sources.s.channels = c # Each sink's type must be defined producer.sinks.r.type = org.apache.flume.sink.kafka.KafkaSink producer.sinks.r.topic = mytopic producer.sinks.r.brokerList = spark1:9092,spark2:9092,spark3:9092 producer.sinks.r.requiredAcks = 1 producer.sinks.r.batchSize = 20 producer.sinks.r.channel = c1 #Specify the channel the sink should use producer.sinks.r.channel = c # Each channel's type is defined. producer.channels.c.type = org.apache.flume.channel.kafka.KafkaChannel producer.channels.c.capacity = 10000 producer.channels.c.transactionCapacity = 1000 producer.channels.c.brokerList=spark1:9092,spark2:9092,spark3:9092 producer.channels.c.topic=channel1 producer.channels.c.zookeeperConnect=spark1:2181,spark2:2181,spark3:2181
关键是指定如源为接收网络端口的666来的数据,并输入kafka的集群,需配置好topic及zk的地址
启动接收端脚本:
bin/flume-ng agent --conf conf --conf-file conf/receive.conf --name producer -Dflume.root.logger=INFO,console
4、spark集群处理接收数据
import org.apache.spark.SparkConf import org.apache.spark.SparkContext import org.apache.spark.streaming.kafka.KafkaUtils import org.apache.spark.streaming.Seconds import org.apache.spark.streaming.StreamingContext import kafka.serializer.StringDecoder import scala.collection.immutable.HashMap import org.apache.log4j.Level import org.apache.log4j.Logger /** * @author Administrator */ object KafkaDataTest { def main(args: Array[String]): Unit = { Logger.getLogger("org.apache.spark").setLevel(Level.WARN); Logger.getLogger("org.eclipse.jetty.server").setLevel(Level.ERROR); val conf = new SparkConf().setAppName("stocker").setMaster("local[2]") val sc = new SparkContext(conf) val ssc = new StreamingContext(sc, Seconds(1)) // Kafka configurations val topics = Set("mytopic") val brokers = "spark1:9092,spark2:9092,spark3:9092" val kafkaParams = Map[String, String]("metadata.broker.list" -> brokers, "serializer.class" -> "kafka.serializer.StringEncoder") // Create a direct stream val kafkaStream = KafkaUtils.createDirectStream[String, String, StringDecoder, StringDecoder](ssc, kafkaParams, topics) val urlClickLogPairsDStream = kafkaStream.flatMap(_._2.split(" ")).map((_, 1)) val urlClickCountDaysDStream = urlClickLogPairsDStream.reduceByKeyAndWindow( (v1: Int, v2: Int) => { v1 + v2 }, Seconds(60), Seconds(5)); urlClickCountDaysDStream.print(); ssc.start() ssc.awaitTermination() } }
spark-streaming接收到kafka集群后的数据,每5s计算60s内的wordcount值
5、测试结果
往日志中依次追加三次日志
spark-streaming处理结果如下:
(hive,1)
(spark,2)
(hadoop,2)
(storm,1)
---------------------------------------
(hive,1)
(spark,3)
(hadoop,3)
(storm,1)
---------------------------------------
(hive,2)
(spark,5)
(hadoop,5)
(storm,2)
与预期一样,充分体现了spark-streaming滑动窗口的特性
关于 基于Flume+Kafka+Spark-Streaming的实时流式处理过程是怎样的就分享到这里了,希望以上内容可以对大家有一定的帮助,可以学到更多知识。如果觉得文章不错,可以把它分享出去让更多的人看到。
免责声明:本站发布的内容(图片、视频和文字)以原创、转载和分享为主,文章观点不代表本网站立场,如果涉及侵权请联系站长邮箱:is@yisu.com进行举报,并提供相关证据,一经查实,将立刻删除涉嫌侵权内容。