温馨提示×

温馨提示×

您好,登录后才能下订单哦!

密码登录×
登录注册×
其他方式登录
点击 登录注册 即表示同意《亿速云用户服务条款》

Predicates Policies有什么用

发布时间:2021-12-20 09:58:21 来源:亿速云 阅读:161 作者:iii 栏目:云计算

本篇内容介绍了“Predicates Policies有什么用”的有关知识,在实际案例的操作过程中,不少人都会遇到这样的困境,接下来就让小编带领大家学习一下如何处理这些情况吧!希望大家仔细阅读,能够学有所成!

##Predicates Policies分析 在/plugin/pkg/scheduler/algorithm/predicates.go中实现了以下的预选策略:

  • NoDiskConflict:检查在此主机上是否存在卷冲突。如果这个主机已经挂载了卷,其它同样使用这个卷的Pod不能调度到这个主机上。GCE,Amazon EBS, and Ceph RBD使用的规则如下:

    • GCE允许同时挂载多个卷,只要这些卷都是只读的。

    • Amazon EBS不允许不同的Pod挂载同一个卷。

    • Ceph RBD不允许任何两个pods分享相同的monitor,match pool和 image。

  • NoVolumeZoneConflict:检查给定的zone限制前提下,检查如果在此主机上部署Pod是否存在卷冲突。假定一些volumes可能有zone调度约束, VolumeZonePredicate根据volumes自身需求来评估pod是否满足条件。必要条件就是任何volumes的zone-labels必须与节点上的zone-labels完全匹配。节点上可以有多个zone-labels的约束(比如一个假设的复制卷可能会允许进行区域范围内的访问)。目前,这个只对PersistentVolumeClaims支持,而且只在PersistentVolume的范围内查找标签。处理在Pod的属性中定义的volumes(即不使用PersistentVolume)有可能会变得更加困难,因为要在调度的过程中确定volume的zone,这很有可能会需要调用云提供商。

  • PodFitsResources:检查主机的资源是否满足Pod的需求。根据实际已经分配的资源量做调度,而不是使用已实际使用的资源量做调度。

  • PodFitsHostPorts:检查Pod内每一个容器所需的HostPort是否已被其它容器占用。如果有所需的HostPort不满足需求,那么Pod不能调度到这个主机上。

  • HostName:检查主机名称是不是Pod指定的HostName。

  • MatchNodeSelector:检查主机的标签是否满足Pod的nodeSelector属性需求。

  • MaxEBSVolumeCount:确保已挂载的EBS存储卷不超过设置的最大值。默认值是39。它会检查直接使用的存储卷,和间接使用这种类型存储的PVC。计算不同卷的总目,如果新的Pod部署上去后卷的数目会超过设置的最大值,那么Pod不能调度到这个主机上。

  • MaxGCEPDVolumeCount:确保已挂载的GCE存储卷不超过设置的最大值。默认值是16。规则同上。

下面是NoDiskConflict的代码实现,其他Predicates Policies实现类似,都得如下函数原型: type FitPredicate func(pod *v1.Pod, meta interface{}, nodeInfo *schedulercache.NodeInfo) (bool, []PredicateFailureReason, error)

func NoDiskConflict(pod *v1.Pod, meta interface{}, nodeInfo *schedulercache.NodeInfo) (bool, []algorithm.PredicateFailureReason, error) {
	for _, v := range pod.Spec.Volumes {
		for _, ev := range nodeInfo.Pods() {
			if isVolumeConflict(v, ev) {
				return false, []algorithm.PredicateFailureReason{ErrDiskConflict}, nil
			}
		}
	}
	return true, nil, nil
}


func isVolumeConflict(volume v1.Volume, pod *v1.Pod) bool {
	// fast path if there is no conflict checking targets.
	if volume.GCEPersistentDisk == nil && volume.AWSElasticBlockStore == nil && volume.RBD == nil && volume.ISCSI == nil {
		return false
	}

	for _, existingVolume := range pod.Spec.Volumes {
		...

		if volume.RBD != nil && existingVolume.RBD != nil {
			mon, pool, image := volume.RBD.CephMonitors, volume.RBD.RBDPool, volume.RBD.RBDImage
			emon, epool, eimage := existingVolume.RBD.CephMonitors, existingVolume.RBD.RBDPool, existingVolume.RBD.RBDImage
			// two RBDs images are the same if they share the same Ceph monitor, are in the same RADOS Pool, and have the same image name
			// only one read-write mount is permitted for the same RBD image.
			// same RBD image mounted by multiple Pods conflicts unless all Pods mount the image read-only
			if haveSame(mon, emon) && pool == epool && image == eimage && !(volume.RBD.ReadOnly && existingVolume.RBD.ReadOnly) {
				return true
			}
		}
	}

	return false
}

##Priorities Policies分析

现在支持的优先级函数包括以下几种:

  • LeastRequestedPriority:如果新的pod要分配给一个节点,这个节点的优先级就由节点空闲的那部分与总容量的比值(即(总容量-节点上pod的容量总和-新pod的容量)/总容量)来决定。CPU和memory权重相当,比值最大的节点的得分最高。需要注意的是,这个优先级函数起到了按照资源消耗来跨节点分配pods的作用。计算公式如下: cpu((capacity – sum(requested)) * 10 / capacity) + memory((capacity – sum(requested)) * 10 / capacity) / 2

  • BalancedResourceAllocation:尽量选择在部署Pod后各项资源更均衡的机器。BalancedResourceAllocation不能单独使用,而且必须和LeastRequestedPriority同时使用,它分别计算主机上的cpu和memory的比重,主机的分值由cpu比重和memory比重的“距离”决定。计算公式如下: score = 10 – abs(cpuFraction-memoryFraction)*10

  • SelectorSpreadPriority:对于属于同一个service、replication controller的Pod,尽量分散在不同的主机上。如果指定了区域,则会尽量把Pod分散在不同区域的不同主机上。调度一个Pod的时候,先查找Pod对于的service或者replication controller,然后查找service或replication controller中已存在的Pod,主机上运行的已存在的Pod越少,主机的打分越高。

  • CalculateAntiAffinityPriority:对于属于同一个service的Pod,尽量分散在不同的具有指定标签的主机上。

  • ImageLocalityPriority:根据主机上是否已具备Pod运行的环境来打分。ImageLocalityPriority会判断主机上是否已存在Pod运行所需的镜像,根据已有镜像的大小返回一个0-10的打分。如果主机上不存在Pod所需的镜像,返回0;如果主机上存在部分所需镜像,则根据这些镜像的大小来决定分值,镜像越大,打分就越高。

  • NodeAffinityPriority(Kubernetes1.2实验中的新特性):Kubernetes调度中的亲和性机制。Node Selectors(调度时将pod限定在指定节点上),支持多种操作符(In, NotIn, Exists, DoesNotExist, Gt, Lt),而不限于对节点labels的精确匹配。另外,Kubernetes支持两种类型的选择器,一种是“hard(requiredDuringSchedulingIgnoredDuringExecution)”选择器,它保证所选的主机必须满足所有Pod对主机的规则要求。这种选择器更像是之前的nodeselector,在nodeselector的基础上增加了更合适的表现语法。另一种是“soft(preferresDuringSchedulingIgnoredDuringExecution)”选择器,它作为对调度器的提示,调度器会尽量但不保证满足NodeSelector的所有要求。

下面是ImageLocalityPriority的代码实现,其他Priorities Policies实现类似,都得如下函数原型: type PriorityMapFunction func(pod *v1.Pod, meta interface{}, nodeInfo *schedulercache.NodeInfo) (schedulerapi.HostPriority, error)

func ImageLocalityPriorityMap(pod *v1.Pod, meta interface{}, nodeInfo *schedulercache.NodeInfo) (schedulerapi.HostPriority, error) {
	node := nodeInfo.Node()
	if node == nil {
		return schedulerapi.HostPriority{}, fmt.Errorf("node not found")
	}

	var sumSize int64
	for i := range pod.Spec.Containers {
		sumSize += checkContainerImageOnNode(node, &pod.Spec.Containers[i])
	}
	return schedulerapi.HostPriority{
		Host:  node.Name,
		Score: calculateScoreFromSize(sumSize),
	}, nil
}

func calculateScoreFromSize(sumSize int64) int {
	var score int
	switch {
	case sumSize == 0 || sumSize < minImgSize:
		// score == 0 means none of the images required by this pod are present on this
		// node or the total size of the images present is too small to be taken into further consideration.
		score = 0
	// If existing images' total size is larger than max, just make it highest priority.
	case sumSize >= maxImgSize:
		score = 10
	default:
		score = int((10 * (sumSize - minImgSize) / (maxImgSize - minImgSize)) + 1)
	}
	// Return which bucket the given size belongs to
	return score
}

其计算每个Node的Score算法为: score = int((10 * (sumSize - minImgSize) / (maxImgSize - minImgSize)) + 1)

其中: minImgSize int64 = 23 * mb, maxImgSize int64 = 1000 * mb, sumSize为Pod中定义的container Images' size 的总和

可见,Node上该Pod要求的容器镜像大小之和越大,得分越高,越有可能是目标Node。

“Predicates Policies有什么用”的内容就介绍到这里了,感谢大家的阅读。如果想了解更多行业相关的知识可以关注亿速云网站,小编将为大家输出更多高质量的实用文章!

向AI问一下细节

免责声明:本站发布的内容(图片、视频和文字)以原创、转载和分享为主,文章观点不代表本网站立场,如果涉及侵权请联系站长邮箱:is@yisu.com进行举报,并提供相关证据,一经查实,将立刻删除涉嫌侵权内容。

AI