温馨提示×

温馨提示×

您好,登录后才能下订单哦!

密码登录×
登录注册×
其他方式登录
点击 登录注册 即表示同意《亿速云用户服务条款》

伸缩Kubernetes到2500个节点中遇到的问题和解决方法是什么

发布时间:2021-12-06 13:57:28 来源:亿速云 阅读:134 作者:柒染 栏目:云计算

这篇文章给大家介绍伸缩Kubernetes到2500个节点中遇到的问题和解决方法是什么,内容非常详细,感兴趣的小伙伴们可以参考借鉴,希望对大家能有所帮助。

Kubernetes自从1.6起便号称可以承载5000个以上的节点,但是从数十到5000的路上,难免会遇到问题。

遇到的问题以及如何解决

问题一:1 ~ 500个节点之后

问题:

kubectl 有时会出现 timeout(p.s. kubectl -v=6 可以显示所有API细节指令)

尝试解决:

  • 一开始以为是kube-apiserver服务器负载的问题,尝试增加proxy做replica协助进行负载均衡

  • 但是超过10个备份master的时候,发现问题不是因为kube-apiserver无法承受负载,GKE通过一台32-core VM就可以承载500个节点

原因:

  • 排除以上原因,开始排查master上剩下的几个服务(etcd、kube-proxy)

  • 开始尝试调整etcd

  • 通过使用datadog查看etcd吞吐量,发现有异常延迟(latency spiking ~100 ms)

  • 通过Fio工具做性能评估,发现只用到10%的IOPS(Input/Output Per Second),由于写入延迟(write latency 2ms)降低了性能

  • 尝试把SSD从网络硬盘变为每台机器有个local temp drive(SSD)

  • 结果从~100ms —> 200us

问题二:~1000个节点的时候

问题:

  • 发现kube-apiserver每秒从etcd上读取500mb

尝试解决:

  • 通过Prometheus查看container之间的网络流量

原因:

  • 发现Fluentd和Datadog抓取每个节点上资料过于频繁

  • 调低两个服务的抓取频率,网络性能从500mb/s降低到几乎没有

  • etcd小技巧:通过--etcd-servers-overrides可以将Kubernetes Event的资料写入作为切割,分不同机器处理,如下所示

--etcd-servers-overrides=/events#https://0.example.com:2381;https://1.example.com:2381;https://2.example.com:2381

问题三:1000 ~ 2000个节点

问题:

  • 无法再写入数据,报错cascading failure

  • kubernetes-ec2-autoscaler在全部的etcd都停掉以后才回传问题,并且关闭所有的etcd

尝试解决:

  • 猜测是etcd硬盘满了,但是检查SSD依旧有很多空间

  • 检查是否有预设的空间限制,发现有2GB大小限制

解決方法:

  • 在etcd启动参数中加入--quota-backend-bytes

  • 修改kubernetes-ec2-autoscaler逻辑——如果超过50%出现问题,关闭集群

各种服务的优化

Kube masters 的高可用

一般来说,我们的架构是一个kube-master(主要的 Kubernetes 服务提供组件,上面有kube-apiserver、kube-scheduler 和kube-control-manager)加上多個slave。但是要达到高可用,要参考一下方式实现:

  • kube-apiserver要设置多个服务,并且通过参数--apiserver-count重启并且设定

  • kubernetes-ec2-autoscaler可以帮助我们自动关闭idle的资源,但是这跟Kubernetes scheduler的原则相悖,不过通过这些设定,可以帮助我们尽量集中资源。

{
"kind" : "Policy",
"apiVersion" : "v1",
"predicates" : [
  {"name" : "GeneralPredicates"},
  {"name" : "MatchInterPodAffinity"},
  {"name" : "NoDiskConflict"},
  {"name" : "NoVolumeZoneConflict"},
  {"name" : "PodToleratesNodeTaints"}
  ],
"priorities" : [
  {"name" : "MostRequestedPriority", "weight" : 1},
  {"name" : "InterPodAffinityPriority", "weight" : 2}
  ]
}

以上为调整kubernetes scheduler范例,通过调高InterPodAffinityPriority的权重,达到我们的目的。更多示范参考范例.

需要注意的是,目前Kubernetes Scheduler Policy并不支持动态切换,需要重启kube-apiserver(issue: 41600)

调整scheduler policy造成的影响

OpenAI使用了KubeDNS ,但不久后发现——

问题:

  • 经常出现DNS查询不到的情况(随机发生)

  • 超过 ~200QPS domain lookup

尝试解决:

  • 尝试查看为何有这种状态,发现有些node上跑了超过10个KuberDNS

解决方法:

  • 由于scheduler policy造成了许多POD的集中

  • KubeDNS很轻量,容易被分配到同一节点上,造成domain lookup的集中

  • 需要修改POD affinity(相关介绍),尽量让KubeDNS分配到不同的node之上

affinity:
 podAntiAffinity:
   requiredDuringSchedulingIgnoredDuringExecution:
   - weight: 100
     labelSelector:
       matchExpressions:
       - key: k8s-app
         operator: In
         values:
         - kube-dns
     topologyKey: kubernetes.io/hostname
新建节点时Docker image pulls缓慢的问题

问题:

  • 每次新节点建立起来,docker image pull都要花30分钟

尝试解决:

  • 有一个很大的container image Dota,差不多17GB,影响了整个节点的image pulling

  • 开始检查kubelet是否有其他image pull选项

解决方法:

  • 在kubelet增加选项--serialize-image-pulls=false来启动image pulling,让其他服务可以更早地pull(参考:kubelet启动选项)

  • 这个选项需要docker storgae切换到overlay2(可以参考docker教学文章)

  • 并且把docker image存放到SSD,可以让image pull更快一些

补充:source trace

// serializeImagePulls when enabled, tells the Kubelet to pull images one
// at a time. We recommend *not* changing the default value on nodes that
// run docker daemon with version  < 1.9 or an Aufs storage backend.
// Issue #10959 has more details.
SerializeImagePulls *bool `json:"serializeImagePulls"`
提高docker image pull的速度

此外,还可以通过以下方式来提高pull的速度

kubelet参数--image-pull-progress-deadline要提高到30mins docker daemon参数max-concurrent-download调整到10才能多线程下载

网络性能提升

Flannel性能限制

OpenAI节点间的网络流量,可以达到10-15GBit/s,但是由于Flannel所以导致流量会降到 ~2GBit/s

解决方式是拿掉Flannel,使用实际的网络

  • hostNetwork: true

  • dnsPolicy: ClusterFirstWithHostNet

关于伸缩Kubernetes到2500个节点中遇到的问题和解决方法是什么就分享到这里了,希望以上内容可以对大家有一定的帮助,可以学到更多知识。如果觉得文章不错,可以把它分享出去让更多的人看到。

向AI问一下细节

免责声明:本站发布的内容(图片、视频和文字)以原创、转载和分享为主,文章观点不代表本网站立场,如果涉及侵权请联系站长邮箱:is@yisu.com进行举报,并提供相关证据,一经查实,将立刻删除涉嫌侵权内容。

AI