本篇内容介绍了“怎么用Kubernetes和Helm进行高效的超参数调优”的有关知识,在实际案例的操作过程中,不少人都会遇到这样的困境,接下来就让小编带领大家学习一下如何处理这些情况吧!希望大家仔细阅读,能够学有所成!
在进行Hyperparameter Sweep的时候,我们需要根据许多不同的超参数组合进行不同的训练,为同一模型进行多次训练需要消耗大量计算资源或者耗费大量时间。
如果根据不同的超参数并行进行训练,这需要大量计算资源。
如果在固定计算资源上顺序进行所有不同超参数组合对应的训练,这需要花费大量时间完成所有组合对应的训练。
因此在落地时中,大多数人通过非常有限的几次手动微调他们的超参数就挑选一个相对最优的组合。
通过Kubernetes与Helm,您可以非常轻松地探索非常大的超参数空间,同时最大化集群的利用率,从而优化成本。
Helm使我们能够将应用程序打包到chart中并轻松地对其进行参数化。在Hyperparameter Sweep时,我们可以利用Helm chart values的配置,在template中生成对应的TFJobs进行训练部署,同时chart中还可以部署一个TensorBoard实例来监控所有这些TFJobs,这样我们就可以快速比较我们所有的超参数组合训练的结果,对那些训练效果不好的超参数组合,我们可以尽早删除对应的训练任务,这无疑会大幅的节省集群的计算资源,从而降低成本。
我们将通过Azure/kubeflow-labs/hyperparam-sweep中的例子进行Demo。
首先通过以下Dockerfile制作训练的镜像:
FROM tensorflow/tensorflow:1.7.0-gpu COPY requirements.txt /app/requirements.txt WORKDIR /app RUN mkdir ./output RUN mkdir ./logs RUN mkdir ./checkpoints RUN pip install -r requirements.txt COPY ./* /app/ ENTRYPOINT [ "python", "/app/main.py" ]
其中main.py训练脚本内容如下:
import click import tensorflow as tf import numpy as np from skimage.data import astronaut from scipy.misc import imresize, imsave, imread img = imread('./starry.jpg') img = imresize(img, (100, 100)) save_dir = 'output' epochs = 2000 def linear_layer(X, layer_size, layer_name): with tf.variable_scope(layer_name): W = tf.Variable(tf.random_uniform([X.get_shape().as_list()[1], layer_size], dtype=tf.float32), name='W') b = tf.Variable(tf.zeros([layer_size]), name='b') return tf.nn.relu(tf.matmul(X, W) + b) @click.command() @click.option("--learning-rate", default=0.01) @click.option("--hidden-layers", default=7) @click.option("--logdir") def main(learning_rate, hidden_layers, logdir='./logs/1'): X = tf.placeholder(dtype=tf.float32, shape=(None, 2), name='X') y = tf.placeholder(dtype=tf.float32, shape=(None, 3), name='y') current_input = X for layer_id in range(hidden_layers): h = linear_layer(current_input, 20, 'layer{}'.format(layer_id)) current_input = h y_pred = linear_layer(current_input, 3, 'output') #loss will be distance between predicted and true RGB loss = tf.reduce_mean(tf.reduce_sum(tf.squared_difference(y, y_pred), 1)) tf.summary.scalar('loss', loss) train_op = tf.train.AdamOptimizer(learning_rate).minimize(loss) merged_summary_op = tf.summary.merge_all() res_img = tf.cast(tf.clip_by_value(tf.reshape(y_pred, (1,) + img.shape), 0, 255), tf.uint8) img_summary = tf.summary.image('out', res_img, max_outputs=1) xs, ys = get_data(img) with tf.Session() as sess: tf.global_variables_initializer().run() train_writer = tf.summary.FileWriter(logdir + '/train', sess.graph) test_writer = tf.summary.FileWriter(logdir + '/test') batch_size = 50 for i in range(epochs): # Get a random sampling of the dataset idxs = np.random.permutation(range(len(xs))) # The number of batches we have to iterate over n_batches = len(idxs) // batch_size # Now iterate over our stochastic minibatches: for batch_i in range(n_batches): batch_idxs = idxs[batch_i * batch_size: (batch_i + 1) * batch_size] sess.run([train_op, loss, merged_summary_op], feed_dict={X: xs[batch_idxs], y: ys[batch_idxs]}) if batch_i % 100 == 0: c, summary = sess.run([loss, merged_summary_op], feed_dict={X: xs[batch_idxs], y: ys[batch_idxs]}) train_writer.add_summary(summary, (i * n_batches * batch_size) + batch_i) print("epoch {}, (l2) loss {}".format(i, c)) if i % 10 == 0: img_summary_res = sess.run(img_summary, feed_dict={X: xs, y: ys}) test_writer.add_summary(img_summary_res, i * n_batches * batch_size) def get_data(img): xs = [] ys = [] for row_i in range(img.shape[0]): for col_i in range(img.shape[1]): xs.append([row_i, col_i]) ys.append(img[row_i, col_i]) xs = (xs - np.mean(xs)) / np.std(xs) return xs, np.array(ys) if __name__ == "__main__": main()
docker build制作镜像时,会将根目录下的starry.jpg图片打包进去供main.py读取。
main.py使用基于Andrej Karpathy's Image painting demo的模型,这个模型的目标是绘制一个尽可能接近原作的新图片,文森特梵高的“星夜”。
在Helm chart values.yaml中配置如下:
image:ritazh / tf-paint:gpu useGPU:true hyperParamValues: learningRate: - 0.001 - 0.01 - 0.1 hiddenLayers: - 5 - 6 - 7
image: 配置训练任务对应的docker image,就是前面您制作的镜像。
useGPU: bool值,默认true表示将使用gpu进行训练,如果是false,则需要您制作镜像时使用tensorflow/tensorflow:1.7.0
base image。
hyperParamValues: 超参数们的配置,在这里我们只配置了learningRate
, hiddenLayers
两个超参数。
Helm chart中主要是TFJob对应的定义、Tensorboard的Deployment及其Service的定义:
# First we copy the values of values.yaml in variable to make it easier to access them {{- $lrlist := .Values.hyperParamValues.learningRate -}} {{- $nblayerslist := .Values.hyperParamValues.hiddenLayers -}} {{- $image := .Values.image -}} {{- $useGPU := .Values.useGPU -}} {{- $chartname := .Chart.Name -}} {{- $chartversion := .Chart.Version -}} # Then we loop over every value of $lrlist (learning rate) and $nblayerslist (hidden layer depth) # This will result in create 1 TFJob for every pair of learning rate and hidden layer depth {{- range $i, $lr := $lrlist }} {{- range $j, $nblayers := $nblayerslist }} apiVersion: kubeflow.org/v1alpha1 kind: TFJob # Each one of our trainings will be a separate TFJob metadata: name: module8-tf-paint-{{ $i }}-{{ $j }} # We give a unique name to each training labels: chart: "{{ $chartname }}-{{ $chartversion | replace "+" "_" }}" spec: replicaSpecs: - template: spec: restartPolicy: OnFailure containers: - name: tensorflow image: {{ $image }} env: - name: LC_ALL value: C.UTF-8 args: # Here we pass a unique learning rate and hidden layer count to each instance. # We also put the values between quotes to avoid potential formatting issues - --learning-rate - {{ $lr | quote }} - --hidden-layers - {{ $nblayers | quote }} - --logdir - /tmp/tensorflow/tf-paint-lr{{ $lr }}-d-{{ $nblayers }} # We save the summaries in a different directory {{ if $useGPU }} # We only want to request GPUs if we asked for it in values.yaml with useGPU resources: limits: nvidia.com/gpu: 1 {{ end }} volumeMounts: - mountPath: /tmp/tensorflow subPath: module8-tf-paint # As usual we want to save everything in a separate subdirectory name: azurefile volumes: - name: azurefile persistentVolumeClaim: claimName: azurefile --- {{- end }} {{- end }} # We only want one instance running for all our jobs, and not 1 per job. apiVersion: v1 kind: Service metadata: labels: app: tensorboard name: module8-tensorboard spec: ports: - port: 80 targetPort: 6006 selector: app: tensorboard type: LoadBalancer --- apiVersion: extensions/v1beta1 kind: Deployment metadata: labels: app: tensorboard name: module8-tensorboard spec: template: metadata: labels: app: tensorboard spec: volumes: - name: azurefile persistentVolumeClaim: claimName: azurefile containers: - name: tensorboard command: - /usr/local/bin/tensorboard - --logdir=/tmp/tensorflow - --host=0.0.0.0 image: tensorflow/tensorflow ports: - containerPort: 6006 volumeMounts: - mountPath: /tmp/tensorflow subPath: module8-tf-paint name: azurefile
按照上面的超参数配置,在helm install时,9个超参数组合会产生9个TFJob,对应我们指定的3个learningRate和3个hiddenLayers所有组合。
main.py训练脚本有3个参数:
argument | description | default value |
---|---|---|
--learning-rate | Learning rate value | 0.001 |
--hidden-layers | Number of hidden layers in our network. | 4 |
--log-dir | Path to save TensorFlow's summaries | None |
执行helm install命令即可轻松完成所有不同超参数组合对应的训练部署,这里我们只使用了单机训练,您也可以使用分布式训练。
helm install . NAME: telling-buffalo LAST DEPLOYED: NAMESPACE: tfworkflow STATUS: DEPLOYED RESOURCES: ==> v1/Service NAME TYPE CLUSTER-IP EXTERNAL-IP PORT(S) AGE module8-tensorboard LoadBalancer 10.0.142.217 <pending> 80:30896/TCP 1s ==> v1beta1/Deployment NAME DESIRED CURRENT UP-TO-DATE AVAILABLE AGE module8-tensorboard 1 1 1 0 1s ==> v1alpha1/TFJob NAME AGE module8-tf-paint-0-0 1s module8-tf-paint-1-0 1s module8-tf-paint-1-1 1s module8-tf-paint-2-1 1s module8-tf-paint-2-2 1s module8-tf-paint-0-1 1s module8-tf-paint-0-2 1s module8-tf-paint-1-2 1s module8-tf-paint-2-0 0s ==> v1/Pod(related) NAME READY STATUS RESTARTS AGE module8-tensorboard-7ccb598cdd-6vg7h 0/1 ContainerCreating 0 1s
部署chart后,查看已创建的Pods,您应该看到对应的一些列Pods,以及监视所有窗格的单个TensorBoard实例:
$ kubectl get pods NAME READY STATUS RESTARTS AGE module8-tensorboard-7ccb598cdd-6vg7h 1/1 Running 0 16s module8-tf-paint-0-0-master-juc5-0-hw5cm 0/1 Pending 0 4s module8-tf-paint-0-1-master-pu49-0-jp06r 1/1 Running 0 14s module8-tf-paint-0-2-master-awhs-0-gfra0 0/1 Pending 0 6s module8-tf-paint-1-0-master-5tfm-0-dhhhv 1/1 Running 0 16s module8-tf-paint-1-1-master-be91-0-zw4gk 1/1 Running 0 16s module8-tf-paint-1-2-master-r2nd-0-zhws1 0/1 Pending 0 7s module8-tf-paint-2-0-master-7w37-0-ff0w9 0/1 Pending 0 13s module8-tf-paint-2-1-master-260j-0-l4o7r 0/1 Pending 0 10s module8-tf-paint-2-2-master-jtjb-0-5l84q 0/1 Pending 0 9s
注意:由于群集中可用的GPU资源,某些pod正在等待处理。如果群集中有3个GPU,则在给定时间最多只能有3个TFJob(每个TFJob请求了一块gpu)并行训练。
TensorBoard Service也会在Helm install执行时自动完成创建,您可以使用该Service的External-IP连接到TensorBoard。
$ kubectl get service NAME TYPE CLUSTER-IP EXTERNAL-IP PORT(S) AGE module8-tensorboard LoadBalancer 10.0.142.217 <PUBLIC IP> 80:30896/TCP 5m
通过浏览器访问TensorBoard的Public IP地址,你会看到类似如下的页面(TensorBoard需要一点时间才能显示图像。)
在这里我们可以看到一些超参数对应的模型比其他模型表现更好。例如,所有learning rate为0.1对应的模型全部产生全黑图像,模型效果极差。几分钟后,我们可以看到两个表现最好的超参数组合是:
hidden layers = 5,learning rate = 0.01
hidden layers = 7,learning rate = 0.001
此时,我们可以立刻Kill掉其他表现差的模型训练,释放宝贵的gpu资源。
“怎么用Kubernetes和Helm进行高效的超参数调优”的内容就介绍到这里了,感谢大家的阅读。如果想了解更多行业相关的知识可以关注亿速云网站,小编将为大家输出更多高质量的实用文章!
免责声明:本站发布的内容(图片、视频和文字)以原创、转载和分享为主,文章观点不代表本网站立场,如果涉及侵权请联系站长邮箱:is@yisu.com进行举报,并提供相关证据,一经查实,将立刻删除涉嫌侵权内容。