本篇文章为大家展示了云函数SCF与对象存储实现WordCount算法的过程,内容简明扼要并且容易理解,绝对能使你眼前一亮,通过这篇文章的详细介绍希望你能有所收获。
将尝试通过 MapReduce 模型实现一个简单的 WordCount 算法,区别于传统使用 Hadoop 等大数据框架,使用云函数 SCF 与对象存储 COS 来实现。
MapReduce 在维基百科中的解释如下:
MapReduce 是 Google 提出的一个软件架构,用于大规模数据集(大于 1TB)的并行运算。概念「Map(映射)」和「Reduce(归纳)」,及他们的主要思想,都是从函数式编程语言借来的,还有从矢量编程语言借来的特性。
通过这段描述,我们知道,MapReduce 是面向大数据并行处理的计算模型、框架和平台,在传统学习中,通常会在 Hadoop 等分布式框架下进行 MapReduce 相关工作,随着云计算的逐渐发展,各个云厂商也都先后推出了在线的 MapReduce 业务。
在开始之前,我们根据 MapReduce 的要求,先绘制一个简单的流程图:
在这个结构中,我们需要 2 个云函数分别作 Mapper 和 Reducer;以及 3 个对象存储的存储桶,分别作为输入的存储桶、中间临时缓存存储桶和结果存储桶。在实例前,由于我们的函数即将部署在广州区,因此在广州区建立 3 个存储桶:
对象存储1 ap-guangzhou srcmr 对象存储2 ap-guangzhou middlestagebucket 对象存储3 ap-guangzhou destcmr
为了让整个 Mapper 和 Reducer 逻辑更加清晰,在开始之前先对传统的 WordCount 结构进行改造,使其更加适合云函数,同时合理分配 Mapper 和 Reducer 的工作:
编写 Mapper 相关逻辑,代码如下:
# -*- coding: utf8 -*- import datetime from qcloud_cos_v5 import CosConfig from qcloud_cos_v5 import CosS3Client from qcloud_cos_v5 import CosServiceError import re import os import sys import logging logging.basicConfig(level=logging.INFO, stream=sys.stdout) logger = logging.getLogger() logger.setLevel(level=logging.INFO) region = u'ap-guangzhou' # 根据实际情况,修改地域 middle_stage_bucket = 'middlestagebucket' # 根据实际情况,修改bucket名 def delete_file_folder(src): if os.path.isfile(src): try: os.remove(src) except: pass elif os.path.isdir(src): for item in os.listdir(src): itemsrc = os.path.join(src, item) delete_file_folder(itemsrc) try: os.rmdir(src) except: pass def download_file(cos_client, bucket, key, download_path): logger.info("Get from [%s] to download file [%s]" % (bucket, key)) try: response = cos_client.get_object(Bucket=bucket, Key=key, ) response['Body'].get_stream_to_file(download_path) except CosServiceError as e: print(e.get_error_code()) print(e.get_error_msg()) return -1 return 0 def upload_file(cos_client, bucket, key, local_file_path): logger.info("Start to upload file to cos") try: response = cos_client.put_object_from_local_file( Bucket=bucket, LocalFilePath=local_file_path, Key='{}'.format(key)) except CosServiceError as e: print(e.get_error_code()) print(e.get_error_msg()) return -1 logger.info("Upload data map file [%s] Success" % key) return 0 def do_mapping(cos_client, bucket, key, middle_stage_bucket, middle_file_key): src_file_path = u'/tmp/' + key.split('/')[-1] middle_file_path = u'/tmp/' + u'mapped_' + key.split('/')[-1] download_ret = download_file(cos_client, bucket, key, src_file_path) # download src file if download_ret == 0: inputfile = open(src_file_path, 'r') # open local /tmp file mapfile = open(middle_file_path, 'w') # open a new file write stream for line in inputfile: line = re.sub('[^a-zA-Z0-9]', ' ', line) # replace non-alphabetic/number characters words = line.split() for word in words: mapfile.write('%st%s' % (word, 1)) # count for 1 mapfile.write('n') inputfile.close() mapfile.close() upload_ret = upload_file(cos_client, middle_stage_bucket, middle_file_key, middle_file_path) # upload the file's each word delete_file_folder(src_file_path) delete_file_folder(middle_file_path) return upload_ret else: return -1 def map_caller(event, context, cos_client): appid = event['Records'][0]['cos']['cosBucket']['appid'] bucket = event['Records'][0]['cos']['cosBucket']['name'] + '-' + appid key = event['Records'][0]['cos']['cosObject']['key'] key = key.replace('/' + str(appid) + '/' + event['Records'][0]['cos']['cosBucket']['name'] + '/', '', 1) logger.info("Key is " + key) middle_bucket = middle_stage_bucket + '-' + appid middle_file_key = '/' + 'middle_' + key.split('/')[-1] return do_mapping(cos_client, bucket, key, middle_bucket, middle_file_key) def main_handler(event, context): logger.info("start main handler") if "Records" not in event.keys(): return {"errorMsg": "event is not come from cos"} secret_id = "" secret_key = "" config = CosConfig(Region=region, SecretId=secret_id, SecretKey=secret_key, ) cos_client = CosS3Client(config) start_time = datetime.datetime.now() res = map_caller(event, context, cos_client) end_time = datetime.datetime.now() print("data mapping duration: " + str((end_time - start_time).microseconds / 1000) + "ms") if res == 0: return "Data mapping SUCCESS" else: return "Data mapping FAILED"
同样的方法,建立 reducer.py
文件,编写 Reducer 逻辑,代码如下:
# -*- coding: utf8 -*- from qcloud_cos_v5 import CosConfig from qcloud_cos_v5 import CosS3Client from qcloud_cos_v5 import CosServiceError from operator import itemgetter import os import sys import datetime import logging region = u'ap-guangzhou' # 根据实际情况,修改地域 result_bucket = u'destmr' # 根据实际情况,修改bucket名 logging.basicConfig(level=logging.INFO, stream=sys.stdout) logger = logging.getLogger() logger.setLevel(level=logging.INFO) def delete_file_folder(src): if os.path.isfile(src): try: os.remove(src) except: pass elif os.path.isdir(src): for item in os.listdir(src): itemsrc = os.path.join(src, item) delete_file_folder(itemsrc) try: os.rmdir(src) except: pass def download_file(cos_client, bucket, key, download_path): logger.info("Get from [%s] to download file [%s]" % (bucket, key)) try: response = cos_client.get_object(Bucket=bucket, Key=key, ) response['Body'].get_stream_to_file(download_path) except CosServiceError as e: print(e.get_error_code()) print(e.get_error_msg()) return -1 return 0 def upload_file(cos_client, bucket, key, local_file_path): logger.info("Start to upload file to cos") try: response = cos_client.put_object_from_local_file( Bucket=bucket, LocalFilePath=local_file_path, Key='{}'.format(key)) except CosServiceError as e: print(e.get_error_code()) print(e.get_error_msg()) return -1 logger.info("Upload data map file [%s] Success" % key) return 0 def qcloud_reducer(cos_client, bucket, key, result_bucket, result_key): word2count = {} src_file_path = u'/tmp/' + key.split('/')[-1] result_file_path = u'/tmp/' + u'result_' + key.split('/')[-1] download_ret = download_file(cos_client, bucket, key, src_file_path) if download_ret == 0: map_file = open(src_file_path, 'r') result_file = open(result_file_path, 'w') for line in map_file: line = line.strip() word, count = line.split('t', 1) try: count = int(count) word2count[word] = word2count.get(word, 0) + count except ValueError: logger.error("error value: %s, current line: %s" % (ValueError, line)) continue map_file.close() delete_file_folder(src_file_path) sorted_word2count = sorted(word2count.items(), key=itemgetter(1))[::-1] for wordcount in sorted_word2count: res = '%st%s' % (wordcount[0], wordcount[1]) result_file.write(res) result_file.write('n') result_file.close() upload_ret = upload_file(cos_client, result_bucket, result_key, result_file_path) delete_file_folder(result_file_path) return upload_ret def reduce_caller(event, context, cos_client): appid = event['Records'][0]['cos']['cosBucket']['appid'] bucket = event['Records'][0]['cos']['cosBucket']['name'] + '-' + appid key = event['Records'][0]['cos']['cosObject']['key'] key = key.replace('/' + str(appid) + '/' + event['Records'][0]['cos']['cosBucket']['name'] + '/', '', 1) logger.info("Key is " + key) res_bucket = result_bucket + '-' + appid result_key = '/' + 'result_' + key.split('/')[-1] return qcloud_reducer(cos_client, bucket, key, res_bucket, result_key) def main_handler(event, context): logger.info("start main handler") if "Records" not in event.keys(): return {"errorMsg": "event is not come from cos"} secret_id = "SecretId" secret_key = "SecretKey" config = CosConfig(Region=region, SecretId=secret_id, SecretKey=secret_key, ) cos_client = CosS3Client(config) start_time = datetime.datetime.now() res = reduce_caller(event, context, cos_client) end_time = datetime.datetime.now() print("data reducing duration: " + str((end_time - start_time).microseconds / 1000) + "ms") if res == 0: return "Data reducing SUCCESS" else: return "Data reducing FAILED"
遵循 Serverless Framework 的 yaml
规范,编写 serveerless.yaml
:
WordCountMapper: component: "@serverless/tencent-scf" inputs: name: mapper codeUri: ./code handler: index.main_handler runtime: Python3.6 region: ap-guangzhou description: 网站监控 memorySize: 64 timeout: 20 events: - cos: name: srcmr-1256773370.cos.ap-guangzhou.myqcloud.com parameters: bucket: srcmr-1256773370.cos.ap-guangzhou.myqcloud.com filter: prefix: '' suffix: '' events: cos:ObjectCreated:* enable: true WordCountReducer: component: "@serverless/tencent-scf" inputs: name: reducer codeUri: ./code handler: index.main_handler runtime: Python3.6 region: ap-guangzhou description: 网站监控 memorySize: 64 timeout: 20 events: - cos: name: middlestagebucket-1256773370.cos.ap-guangzhou.myqcloud.com parameters: bucket: middlestagebucket-1256773370.cos.ap-guangzhou.myqcloud.com filter: prefix: '' suffix: '' events: cos:ObjectCreated:* enable: true
完成之后,通过 sls --debug
指令进行部署。部署成功之后,进行基本的测试:
准备一个英文文档:
登录腾讯云后台,打开我们最初建立的存储桶:srcmr,并上传该文件;
上传成功之后,稍等片刻即可看到 Reducer 程序已经在 Mapper 执行之后,产出日志:
此时,我们打开结果存储桶,查看结果:
现在,我们就完成了简单的词频统计功能。
Serverless 架构是适用于大数据处理的。在腾讯云官网,我们也可以看到其关于数据 ETL 处理的场景描述:
本实例中,有一键部署多个函数的操作。在实际生产中,每个项目都不会是单个函数单打独斗的,而是多个函数组合应用,形成一个 Service 体系,所以一键部署多个函数就显得尤为重要。通过本实例,希望读者可以对 Serverless 架构的应用场景有更多的了解,并且能有所启发,将云函数和不同触发器进行组合,应用在自身业务中。
上述内容就是云函数SCF与对象存储实现WordCount算法的过程,你们学到知识或技能了吗?如果还想学到更多技能或者丰富自己的知识储备,欢迎关注亿速云行业资讯频道。
免责声明:本站发布的内容(图片、视频和文字)以原创、转载和分享为主,文章观点不代表本网站立场,如果涉及侵权请联系站长邮箱:is@yisu.com进行举报,并提供相关证据,一经查实,将立刻删除涉嫌侵权内容。