温馨提示×

温馨提示×

您好,登录后才能下订单哦!

密码登录×
登录注册×
其他方式登录
点击 登录注册 即表示同意《亿速云用户服务条款》

fastText和GloVe怎么使用

发布时间:2021-12-27 14:06:59 来源:亿速云 阅读:250 作者:iii 栏目:大数据

这篇文章主要讲解了“fastText和GloVe怎么使用”,文中的讲解内容简单清晰,易于学习与理解,下面请大家跟着小编的思路慢慢深入,一起来研究和学习“fastText和GloVe怎么使用”吧!

数据+预处理

数据包括7613条tweet(Text列)和label(Target列),不管他们是否在谈论真正的灾难。有3271行通知实际灾难,有4342行通知非实际灾难。

fastText和GloVe怎么使用

文本中真实灾难词的例子:

“ Forest fire near La Ronge Sask. Canada “

使用灾难词而不是关于灾难的例子:

“These boxes are ready to explode! Exploding Kittens finally arrived! gameofkittens #explodingkittens”

数据将被分成训练(6090行)和测试(1523行)集,然后进行预处理。我们将只使用文本列和目标列。

from sklearn.model_selection import train_test_split

data = pd.read_csv('train.csv', sep=',', header=0)

train_df, test_df = train_test_split(data, test_size=0.2, random_state=42, shuffle=True)

此处使用的预处理步骤:

  1. 小写

  2. 清除停用词

  3. 标记化

from sklearn.utils import shuffle

raw_docs_train = train_df['text'].tolist()
raw_docs_test = test_df['text'].tolist()
num_classes = len(label_names)

processed_docs_train = []

for doc in tqdm(raw_docs_train):
  tokens = word_tokenize(doc)
  filtered = [word for word in tokens if word not in stop_words]
  processed_docs_train.append(" ".join(filtered))

processed_docs_test = []

for doc in tqdm(raw_docs_test):
  tokens = word_tokenize(doc)
  filtered = [word for word in tokens if word not in stop_words]
  processed_docs_test.append(" ".join(filtered))

tokenizer = Tokenizer(num_words=MAX_NB_WORDS, lower=True, char_level=False)
tokenizer.fit_on_texts(processed_docs_train + processed_docs_test)  

word_seq_train = tokenizer.texts_to_sequences(processed_docs_train)
word_seq_test = tokenizer.texts_to_sequences(processed_docs_test)
word_index = tokenizer.word_index

word_seq_train = sequence.pad_sequences(word_seq_train, maxlen=max_seq_len)

word_seq_test = sequence.pad_sequences(word_seq_test, maxlen=max_seq_len)

词嵌入

第1步:下载预训练模型

使用fastText和Glove的第一步是下载每个预训练过的模型。我使用google colab来防止我的笔记本电脑使用大内存,所以我用request library下载了它,然后直接在notebook上解压。

我使用了两个词嵌入中最大的预训练模型。fastText模型给出了200万个词向量,而GloVe给出了220万个单词向量。

fastText预训练模型下载
import requests, zipfile, io

zip_file_url = “https://dl.fbaipublicfiles.com/fasttext/vectors-english/wiki-news-300d-1M.vec.zip"

r = requests.get(zip_file_url)

z = zipfile.ZipFile(io.BytesIO(r.content))

z.extractall()
GloVe预训练模型下载
import requests, zipfile, io

zip_file_url = “http://nlp.stanford.edu/data/glove.840B.300d.zip"

r = requests.get(zip_file_url)

z = zipfile.ZipFile(io.BytesIO(r.content))

z.extractall()
第2步:下载预训练模型

FastText提供了加载词向量的格式,需要使用它来加载这两个模型。

embeddings_index = {}

f = codecs.open(‘crawl-300d-2M.vec’, encoding=’utf-8')
# Glove
# f = codecs.open(‘glove.840B.300d.txt’, encoding=’utf-8')

for line in tqdm(f):

    values = line.rstrip().rsplit(‘ ‘)

    word = values[0]

    coefs = np.asarray(values[1:], dtype=’float32')

    embeddings_index[word] = coefs

f.close()
第3步:嵌入矩阵

采用嵌入矩阵来确定训练数据中每个词的权重。

但是有一种可能性是,有些词不在向量中,比如打字错误、缩写或用户名。这些单词将存储在一个列表中,我们可以比较处理来自fastText和GloVe的词的性能

words_not_found = []

nb_words = min(MAX_NB_WORDS, len(word_index)+1)
embedding_matrix = np.zeros((nb_words, embed_dim))

for word, i in word_index.items():
  if i >= nb_words:
     continue
  embedding_vector = embeddings_index.get(word)
  
  if (embedding_vector is not None) and len(embedding_vector) > 0:
     embedding_matrix[i] = embedding_vector
  else:
     words_not_found.append(word)

print('number of null word embeddings: %d' % np.sum(np.sum(embedding_matrix, axis=1) == 0))

fastText上的null word嵌入数为9175,GloVe 上的null word嵌入数为9186。

LSTM

你可以对超参数或架构进行微调,但我将使用非常简单的一个架构,它包含嵌入层、LSTM层、Dense层和Dropout层。

from keras.layers import BatchNormalization
import tensorflow as tf

model = tf.keras.Sequential()

model.add(Embedding(nb_words, embed_dim, input_length=max_seq_len, weights=[embedding_matrix],trainable=False))

model.add(Bidirectional(LSTM(32, return_sequences= True)))
model.add(Dense(32,activation=’relu’))

model.add(Dropout(0.3))
model.add(Dense(1,activation=’sigmoid’))

model.summary()

fastText和GloVe怎么使用

from keras.optimizers import RMSprop
from keras.callbacks import ModelCheckpoint
from tensorflow.keras.callbacks import EarlyStopping

model.compile(loss='binary_crossentropy', optimizer='adam', metrics=['accuracy'])

es_callback = EarlyStopping(monitor='val_loss', patience=3)

history = model.fit(word_seq_train, y_train, batch_size=256, epochs=30, validation_split=0.3, callbacks=[es_callback], shuffle=False)

结果

fastText的准确率为83%,而GloVe的准确率为81%。与没有词嵌入的模型(68%)的性能比较,可以看出词嵌入对性能有显著的影响。

fastText 嵌入的准确度

fastText和GloVe怎么使用

GloVe 嵌入的准确度

fastText和GloVe怎么使用

没有词嵌入的准确度

fastText和GloVe怎么使用

感谢各位的阅读,以上就是“fastText和GloVe怎么使用”的内容了,经过本文的学习后,相信大家对fastText和GloVe怎么使用这一问题有了更深刻的体会,具体使用情况还需要大家实践验证。这里是亿速云,小编将为大家推送更多相关知识点的文章,欢迎关注!

向AI问一下细节

免责声明:本站发布的内容(图片、视频和文字)以原创、转载和分享为主,文章观点不代表本网站立场,如果涉及侵权请联系站长邮箱:is@yisu.com进行举报,并提供相关证据,一经查实,将立刻删除涉嫌侵权内容。

AI