这篇文章主要介绍“怎么使用NaiveBayes分类器检测虚假新闻”,在日常操作中,相信很多人在怎么使用NaiveBayes分类器检测虚假新闻问题上存在疑惑,小编查阅了各式资料,整理出简单好用的操作方法,希望对大家解答”怎么使用NaiveBayes分类器检测虚假新闻”的疑惑有所帮助!接下来,请跟着小编一起来学习吧!
朴素贝叶斯分类器是一种利用贝叶斯定理对数据进行分类的确定性算法。让我们看一个例子:
假设你想预测今天下雨的概率:在过去的几天里,你通过观察天空中的云收集了数据。以下是你的数据表:
在下雨或不下雨的情况下,这个表格表示了某一特征出现的次数。假设出现了灰色云或白色云,我们所拥有的实际上是一个包含下雨概率的表格。
现在有了数据,让我们做一个预测。今天我们看到了灰色的云,没有白云,是雨天还是晴天?要回答这个问题,我们必须使用Bayes定理:
这个定理利用过去的数据做出更好的决定。
如果出现了灰色云,下雨的概率等于以前有灰色云下雨的概率。
根据我们的数据:
P(B | A)(降雨概率|灰色云)=10/11
P(A)(降雨概率)= 11/(50+11) = 11/66 = 1/6
P(B)(灰色云的概率)=1(因为已确认出现了灰色云)
P(A | B)=P(B | A)*P(A)/P(B)
P(A | B)=[(10/11)*(1/6)]/1
P(A | B)=10/66
如果出现了灰色的云,下雨的概率是10/66
通过对naivebayes分类器的简要介绍,让我们用naivebayes分类器来讨论假新闻检测。
考虑到新闻是假的,我们将统计一个词出现在标题中的次数。将其转换为概率,然后计算标题为假的概率,与标题为真的概率相比。
我使用的数据集有21000多个真实新闻实例,23000个假新闻实例。对于一个正常的数据集来说,这可能看起来是不平衡的,但这种不平衡对于计算初始概率是必要的:即标题是假的概率。
import pandas as pd import string
这是程序的三个依赖项:pandas是读取csv文件,string是字符串操作。
true_text = {} fake_text = {} true = pd.read_csv('/Users/XXXXXXXX/Desktop/True.csv') fake = pd.read_csv('/Users/XXXXXXXX/Desktop/Fake.csv')
此脚本用于读取两个数据集,其中包含假新闻和真新闻的实例。
def extract_words(category,dictionary): for entry in category['title']: words = entry.split() for word in words: lower_word = word.lower() if word in dictionary: dictionary[lower_word] += 1 else: dictionary[lower_word] = 1 return dictionary
考虑到标题是假新闻,这个脚本计算一个单词出现的次数,并在其进入词典的条目中添加一个计数,计算每个单词出现的次数。
def count_to_prob(dictionary,length): for term in dictionary: dictionary[term] = dictionary[term]/length return dictionary
此函数通过计算假新闻标题或真实新闻标题的总字数将数字转换为概率。
def calculate_probability(dictionary,X,initial): X.translate(str.maketrans('', '', string.punctuation)) X = X.lower() split = X.split() probability = initial for term in split: if term in dictionary: probability *= dictionary[term] print(term,dictionary[term]) return probability
此函数将相关概率相乘,以计算标题的“分数”。为了做出预测,在使用假新闻和真新闻词典时比较得分。如果假新闻字典返回更高的分数,则模型预测标题为假新闻。
true_text = extract_words(true,true_text) fake_text = extract_words(fake,fake_text) true_count = count_total(true_text) fake_count = count_total(fake_text) true_text = count_to_prob(true_text,true_count) fake_text = count_to_prob(fake_text,fake_count) total_count = true_count + fake_count fake_initial = fake_count/total_count true_initial = true_count/total_count
这个脚本使用上述所有函数为每个单词创建一个概率字典,以便稍后计算标题的“分数”。
X = 'Hillary Clinton eats Donald Trump' calculate_probability(fake_text,X,1)>calculate_probability(true_text,X,1)
最后一个脚本评估了标题:“Hillary Clinton eats Donald Trump”,以测试模型。
True
模型输出的结果是真实的,因为标题显然是假新闻。
到此,关于“怎么使用NaiveBayes分类器检测虚假新闻”的学习就结束了,希望能够解决大家的疑惑。理论与实践的搭配能更好的帮助大家学习,快去试试吧!若想继续学习更多相关知识,请继续关注亿速云网站,小编会继续努力为大家带来更多实用的文章!
免责声明:本站发布的内容(图片、视频和文字)以原创、转载和分享为主,文章观点不代表本网站立场,如果涉及侵权请联系站长邮箱:is@yisu.com进行举报,并提供相关证据,一经查实,将立刻删除涉嫌侵权内容。