本文小编为大家详细介绍“python中Roberts算子指的是什么”,内容详细,步骤清晰,细节处理妥当,希望这篇“python中Roberts算子指的是什么”文章能帮助大家解决疑惑,下面跟着小编的思路慢慢深入,一起来学习新知识吧。
说明
1、Roberts算子又称罗伯茨算子,是最简单的算子,是利用局部差分算子寻找边缘的算子。
用相邻两象素在对角线方向的差异来检测相似梯度幅值的边缘。垂直边缘的检测效果优于斜边缘,定位精度高,噪音敏感。
2、通过OpenCV中的filter2D()函数实现。
该函数的主要功能是通过卷积核实图像的卷积运算:
def filter2D(src, ddepth, kernel, dst=None, anchor=None, delta=None, borderType=None)
实例
import cv2 as cv
import matplotlib.pyplot as plt
# 读取图像
img = cv.imread('data.jpg', cv.COLOR_BGR2GRAY)
rgb_img = cv.cvtColor(img, cv.COLOR_BGR2RGB)
# 灰度化处理图像
grayImage = cv.cvtColor(img, cv.COLOR_BGR2GRAY)
# Roberts 算子
kernelx = np.array([[-1, 0], [0, 1]], dtype=int)
kernely = np.array([[0, -1], [1, 0]], dtype=int)
x = cv.filter2D(grayImage, cv.CV_16S, kernelx)
y = cv.filter2D(grayImage, cv.CV_16S, kernely)
# 转 uint8 ,图像融合
absX = cv.convertScaleAbs(x)
absY = cv.convertScaleAbs(y)
Roberts = cv.addWeighted(absX, 0.5, absY, 0.5, 0)
# 显示图形
titles = ['原始图像', 'Roberts算子']
images = [rgb_img, Roberts]
for i in range(2):
plt.subplot(1, 2, i + 1), plt.imshow(images[i], 'gray')
plt.title(titles[i])
plt.xticks([]), plt.yticks([])
plt.show()
读到这里,这篇“python中Roberts算子指的是什么”文章已经介绍完毕,想要掌握这篇文章的知识点还需要大家自己动手实践使用过才能领会,如果想了解更多相关内容的文章,欢迎关注亿速云行业资讯频道。
亿速云「云服务器」,即开即用、新一代英特尔至强铂金CPU、三副本存储NVMe SSD云盘,价格低至29元/月。点击查看>>
免责声明:本站发布的内容(图片、视频和文字)以原创、转载和分享为主,文章观点不代表本网站立场,如果涉及侵权请联系站长邮箱:is@yisu.com进行举报,并提供相关证据,一经查实,将立刻删除涉嫌侵权内容。
原文链接:https://my.oschina.net/u/4172295/blog/4465762