温馨提示×

温馨提示×

您好,登录后才能下订单哦!

密码登录×
登录注册×
其他方式登录
点击 登录注册 即表示同意《亿速云用户服务条款》

如何进行数据湖deltalake流表的读写

发布时间:2021-12-23 16:47:38 来源:亿速云 阅读:134 作者:柒染 栏目:大数据

这篇文章给大家介绍如何进行数据湖deltalake流表的读写,内容非常详细,感兴趣的小伙伴们可以参考借鉴,希望对大家能有所帮助。

delta lake和 spark structured streaming可以深度整合。delta lake克服了很多常见的与流系统和文件整合带来的相关限制,如下:

  • 保证了多个流(或并发批处理作业)的仅一次处理。

  • 当使用文件作为流源时,可以有效地发现哪些文件是新文件。

1. 作为stream source

1.1 案例讲解

当你的structured streaming使用delta lake作为stream source的时候,应用会处理delta 表中已有的数据,以及delta 表新增的数据。

spark.readStream.format("delta").load("/delta/events")

也可以做一些优化,如下:

a.通过maxFilesPerTrigger配置控制structured streaming从delta lake加载的微批文件数。要知道Structured streaming也是微批的概念。该参数就是控制每次trigger计算的最大新增文件数,默认是1000,实际情况要根据数据量和资源数量进行控制。

b.通过maxBytesPerTrigger控制每次trigger处理的最大数据量。这是设置一个“ soft max”,这意味着一个批处理大约可以处理此数量的数据,并且可能处理的数量超出这个限制。如果使用的是Trigger.Once,则 此配置无效。如果将此配置与maxFilesPerTrigger结合使用,两个参数任意一个达到临届条件,都会生效。

1.2 忽略更新和删除

structured streaming不处理不是追加的输入数据,并且如果对作为source的delta table的表进行了任何修改,则structured streaming会抛出异常。 对于变更常见的企业场景,提供了两种策略,来处理对delta 表变更给structured streaming 任务造成的影响:

  • 可以删除输出和checkpoint,并重新启动structured streaming对数据计算,也即是重新计算一次。

  • 可以设置以下两个选项之一:

    • ignoreDeletes:忽略在分区表中删除数据的事务。

    • ignoreChanges:如果由于诸如UPDATE,MERGE INTO,DELETE(在分区内)或OVERWRITE之类的数据更改操作而不得不在源表中重写文件,则重新处理更新的文件。因此未更改的行仍可能会处理并向下游传输,因此structured streaming的下游应该能够处理重复数据。删除不会传输到下游。ignoreChanges包含ignoreDeletes。因此,如果使用ignoreChanges,则流不会因源表的删除或更新而中断。

1.3 案例

假设有一张表叫做user_events,有三个字段:date,user_email,action,而且该表以date字段进行分区。structured streaming区处理这张表,且还有其程序会对该delta 表进行插入和删除操作。

假设仅仅是删除操作,可以这么配置stream:

events.readStream  .format("delta")  .option("ignoreDeletes", "true")  .load("/delta/user_events")

假设对delta表修改操作,可以这么配置stream:

events.readStream  .format("delta")  .option("ignoreChanges", "true")  .load("/delta/user_events")

如果使用UPDATE语句更新了user_email字段某个值,则包含相关user_email的文件将被重写,这个是delta lake更改操作实现机制后面会讲。使用ignoreChanges时,新记录将与同一文件中的所有其他未更改记录一起向下游传输。 所以下游程序应该能够处理这些传入的重复记录。

2.delta 表作为sink

delta table可以作为Structured Streaming的sink使用。delta lake的事务日志确保了其能实现仅一次处理。

2.1 append mode

默认是append 模式,仅仅是追加数据到delta 表:

events.writeStream  .format("delta")  .outputMode("append")  .option("checkpointLocation", "/delta/events/_checkpoints/etl-from-json")  .start("/delta/events") // as a path

2.2 complete mode

也可以使用Structured Streaming每个批次覆盖一次整张表。在某些聚合场景下会用到该模式:

  .format("delta")  .load("/delta/events")  .groupBy("customerId")  .count()  .writeStream  .format("delta")  .outputMode("complete")  .option("checkpointLocation", "/delta/eventsByCustomer/_checkpoints/streaming-agg")  .start("/delta/eventsByCustomer")

对于延迟要求更宽松的应用程序,可以使用Trigger.Once来节省计算资源。once trigger每次处理从开始到最新的数据,典型的kappa模型,很适合这种场景了。

关于如何进行数据湖deltalake流表的读写就分享到这里了,希望以上内容可以对大家有一定的帮助,可以学到更多知识。如果觉得文章不错,可以把它分享出去让更多的人看到。

向AI问一下细节

免责声明:本站发布的内容(图片、视频和文字)以原创、转载和分享为主,文章观点不代表本网站立场,如果涉及侵权请联系站长邮箱:is@yisu.com进行举报,并提供相关证据,一经查实,将立刻删除涉嫌侵权内容。

AI