本篇内容主要讲解“matlab离散Hopfield神经网络的方法是什么”,感兴趣的朋友不妨来看看。本文介绍的方法操作简单快捷,实用性强。下面就让小编来带大家学习“matlab离散Hopfield神经网络的方法是什么”吧!
%% 清空环境变量
clc
clear
%% 数据导入
load data1 array_one
load data2 array_two
%% 训练样本(目标向量)
T=[array_one;array_two]';
%% 创建网络
net=newhop(T);
%% 数字1和2的带噪声数字点阵(随机法)
noisy_array_one=array_one;
noisy_array_two=array_two;
for i=1:100
a=rand;
if a<0.1
noisy_array_one(i)=-array_one(i);
noisy_array_two(i)=-array_two(i);
end
end
%% 数字识别
% identify_one=sim(net,10,[],noisy_array_one');
noisy_one={(noisy_array_one)'};
identify_one=sim(net,{10,10},{},noisy_one);
identify_one{10}';
noisy_two={(noisy_array_two)'};
identify_two=sim(net,{10,10},{},noisy_two);
identify_two{10}';
%% 结果显示
Array_one=imresize(array_one,20);
subplot(3,2,1)
imshow(Array_one)
title('标准(数字1)')
Array_two=imresize(array_two,20);
subplot(3,2,2)
imshow(Array_two)
title('标准(数字2)')
subplot(3,2,3)
Noisy_array_one=imresize(noisy_array_one,20);
imshow(Noisy_array_one)
title('噪声(数字1)')
subplot(3,2,4)
Noisy_array_two=imresize(noisy_array_two,20);
imshow(Noisy_array_two)
title('噪声(数字2)')
subplot(3,2,5)
imshow(imresize(identify_one{10}',20))
title('识别(数字1)')
subplot(3,2,6)
imshow(imresize(identify_two{10}',20))
title('识别(数字2)')
到此,相信大家对“matlab离散Hopfield神经网络的方法是什么”有了更深的了解,不妨来实际操作一番吧!这里是亿速云网站,更多相关内容可以进入相关频道进行查询,关注我们,继续学习!
免责声明:本站发布的内容(图片、视频和文字)以原创、转载和分享为主,文章观点不代表本网站立场,如果涉及侵权请联系站长邮箱:is@yisu.com进行举报,并提供相关证据,一经查实,将立刻删除涉嫌侵权内容。