温馨提示×

温馨提示×

您好,登录后才能下订单哦!

密码登录×
登录注册×
其他方式登录
点击 登录注册 即表示同意《亿速云用户服务条款》

怎么用python进行销量预测

发布时间:2021-12-17 17:17:18 来源:亿速云 阅读:883 作者:iii 栏目:大数据

这篇文章主要介绍“怎么用python进行销量预测”,在日常操作中,相信很多人在怎么用python进行销量预测问题上存在疑惑,小编查阅了各式资料,整理出简单好用的操作方法,希望对大家解答”怎么用python进行销量预测”的疑惑有所帮助!接下来,请跟着小编一起来学习吧!

  • 案件回顾

饭团销售额下滑

  1. 现有冰激凌店一年的历史销售数据

  2. 数据包括单日的销售量、气温、周几(问题:如何用这些数据预测冰激凌的销量?)


  • 模拟实验与分析

将数据存储为csv格式,导入python。并画出散点图,观察气温和销售量的关系。

import pandas as pd

icecream = pd.read_csv("icecream.csv")

import matplotlib.pyplot as plt

import pylab

plt.rcParams['font.sans-serif'] = ['SimHei']  

plt.scatter(icecream.iloc[:,1],icecream.iloc[:,0])

plt.xlabel("气温")

plt.ylabel("销售量")

pylab.show()

怎么用python进行销量预测

计算两者间的相关系数。

icecream.iloc[:,0:2].corr()

结果为:


销售量气温
销售量1.0000000.844211
气温0.8442111.000000

销售量和气温的相关系数为0.84,结合散点图,认为两者相关。下面用回归分析的方法,通过气温来预测冰激凌销量。

from sklearn.linear_model import LinearRegression

model = LinearRegression()

feature_cols = ['气温']  

X = icecream[feature_cols]  

y = icecream.销售量  

model.fit(X,y)

plt.scatter(icecream.气温, icecream.销售量)  

plt.plot(icecream.气温, model.predict(X) , color='blue')  

plt.xlabel('气温')  

plt.ylabel('销售量')  

plt.show()  

print("截距与斜率:",model.intercept_,model.coef_)

怎么用python进行销量预测

截距与斜率: 57.1673282152 [ 5.21607823]

于是,散点图中的线函数式为y=5.2X+57.2。所以,当气温为25度时,预测的销售量为5.2*25+57.2=187.52,约188个。

  • 几个小概念

回归分析:预测数据时的简便手法。在此例中,销售量为反应变量,也叫因变量,气温为解释变量,也叫自变量。虽然影响销售量的因素除了气温外还有很多,但回归分析中我们要把现实情况简化并公式化,这个过程叫做建模。本例中只用1个解释变量进行模型化称为一元线性回归,如果反应变量同时受到多个解释变量的影响,称为多元线性回归。

到此,关于“怎么用python进行销量预测”的学习就结束了,希望能够解决大家的疑惑。理论与实践的搭配能更好的帮助大家学习,快去试试吧!若想继续学习更多相关知识,请继续关注亿速云网站,小编会继续努力为大家带来更多实用的文章!

向AI问一下细节

免责声明:本站发布的内容(图片、视频和文字)以原创、转载和分享为主,文章观点不代表本网站立场,如果涉及侵权请联系站长邮箱:is@yisu.com进行举报,并提供相关证据,一经查实,将立刻删除涉嫌侵权内容。

AI