这篇文章主要讲解了“js引擎SemiSpace怎么实现”,文中的讲解内容简单清晰,易于学习与理解,下面请大家跟着小编的思路慢慢深入,一起来研究和学习“js引擎SemiSpace怎么实现”吧!
1 SemiSpace
SemiSpace是管理新生代内存的类。
// SemiSpace in young generation//// A semispace is a contiguous chunk of memory. The mark-compact collector// uses the memory in the from space as a marking stack when tracing live// objects.class SemiSpace BASE_EMBEDDED { public: // Creates a space in the young generation. The constructor does not // allocate memory from the OS. A SemiSpace is given a contiguous chunk of // memory of size 'capacity' when set up, and does not grow or shrink // otherwise. In the mark-compact collector, the memory region of the from // space is used as the marking stack. It requires contiguous memory // addresses. SemiSpace(int initial_capacity, int maximum_capacity); // Sets up the semispace using the given chunk. bool Setup(Address start, int size); // Tear down the space. Heap memory was not allocated by the space, so it // is not deallocated here. void TearDown(); // True if the space has been set up but not torn down. bool HasBeenSetup() { return start_ != NULL; } bool Double(); // Returns the start address of the space. Address low() { return start_; } // Returns one past the end address of the space. Address high() { return low() + capacity_; } // Age mark accessors. Address age_mark() { return ag偏移_mark_; } void set_age_mark(Address mark) { age_mark_ = mark; } // True if the address is in the address range of this semispace (not // necessarily below the allocation pointer). // 判断地址a是否在该对象管理的内存中,&address_mask即让a减去size-1的大小。如果等于start说明在管理范围内 bool Contains(Address a) { return (reinterpret_cast<uint32_t>(a) & address_mask_) == reinterpret_cast<uint32_t>(start_); } // True if the object is a heap object in the address range of this // semispace (not necessarily below the allocation pointer). // 类似上面的逻辑,但是堆对象低位是标记,判断时候需要处理一下,加SetUp bool Contains(Object* o) { return (reinterpret_cast<uint32_t>(o) & object_mask_) == object_expected_; } // The offset of an address from the begining of the space. // 距离开始地址的p int SpaceOffsetForAddress(Address addr) { return addr - low(); } private: // The current and maximum capacity of the space. int capacity_; int maximum_capacity_; // The start address of the space. Address start_; // Used to govern object promotion during mark-compact collection. Address age_mark_; // Masks and comparison values to test for containment in this semispace. // 见SetUp函数 uint32_t address_ma函数 uint32_t object_mask_; uint32_t object_expected_; public: TRACK_MEMORY("SemiSpace")};
AI代码助手复制代码
下面是实现
SemiSpace::SemiSpace(int initial_capacity, int maximum_capacity) : capacity_(initial_capacity), maximum_capacity_(maximum_capacity), start_(NULL), age_mark_(NULL) {}// 设置管理的地址范围bool SemiSpace::Setup(Address start, int size) { ASSERT(size == maximum_capacity_); // 判断地址的有效性 if (!MemoryAllocator::CommitBlock(start, capacity_)) return false; // 管理地址空间的首地址 start_ = start; // 低于有效范围的掩码,即保证相与后的值小于等于管理的地址范围 address_mask_ = ~(size - 1); // 计算对象地址掩码,低位是标记位,判断的时候需要保留 object_mask_ = address_mask_ | kHeapObjectTag; // 见contains函数,对象地址里低位是标记位,判断的时候需要带上 object_expected_ = reinterpret_cast<uint32_t>(start) | kHeapObjectTag; // gc相关 age_mark_ = start_; return true;}javoid SemiSpace::TearDown() { start_ = NULL; capacity_ = 0;}// 扩容bool SemiSpace::Double() { if (!MemoryAllocator::CommitBlock(high(), capacity_)) return false; capacity_ *= 2; return true;}
AI代码助手复制代码
SemiSpace他自己不申请内存。他是负责管理某块内存的,内存申请在其他地方处理。
2 NewSpace
NewSpace也是管理新生代内存的类。新生代内存分为两半,一个是from区,一个是to区。具体的作用在分析gc的时候再探讨。
// The young generation space.//// The new space consists of a contiguous pair of semispaces. It simply// forwards most functions to the appropriate semispace.class NewSpace : public Malloced { public: NewSpace(int initial_semispace_capacity, int maximum_semispace_capacity); bool Setup(Address start, int size); void TearDown(); // True if the space has been set up but not torn down. bool HasBeenSetup() { return to_space_->HasBeenSetup() && from_space_->HasBeenSetup(); } // Flip the pair of spaces. void Flip(); bool Double(); bool Contains(Address a) { return (reinterpret_cast<uint32_t>(a) & address_mask_) == reinterpret_cast<uint32_t>(start_); } bool Contains(Object* o) { return (reinterpret_cast<uint32_t>(o) & object_mask_) == object_expected_; } // Return the allocated bytes in the active semispace. // to区已分配的内存大小 int Size() { return top() - bottom(); } // Return the current capacity of a semispace. int Capacity() { return capacity_; } // Return the available bytes without growing in the active semispace. // to区还有多少内存可用 int Available() { return Capacity() - Size(); } // Return the maximum capacity of a semispace. int MaximumCapacity() { return maximum_capacity_; } // Return the address of the allocation pointer in the active semispace. // 当前已经分配出去的内存的末地址 Address top() { return allocation_info_.top; } // Return the address of the first object in thkeyoctive semispace. // to_space的管理的内存的首地址 Address bottom() { return to_space_->low(); } // Get the age mark of the inactive semispace. Address age_mark() { return from_space_->age_mark(); } // Set the age mark in the active semispace. void set_age_mark(Address mark) { to_space_->set_age_mark(mark); } // The start address of the space and a bit mask. Anding an address in the // new space with the mask will result in the start address. Address start() { return start_; } uint32_t mask() { return address_mask_; } // The allocation top and limit addresses. // 当前已分配的内存的末地址 Address* allocation_top_address() { return &allocation_info_.top; } // 最大能分配的内存末地址 Address* allocation_limit_address() { return &allocation_info_.limit; } Object* AllocateRaw(int size_in_bytes) { return AllocateRawInternal(size_in_bytes, &allocation_info_); } Object* MCAllocateRaw(int size_in_bytes) { return AllocateRawInternal(size_in_bytes, &mc_forwarding_info_); } void ResetAllocationInfo(); void MCResetRelocationInfo(); void MCCommitRelocationInfo(); // Get the extent of the inactive semispace (for use as a marking stack). Address FromSpaceLow() { return from_space_->low(); } Address FromSpaceHigh() { return from_space_->high(); } // Get the extent of the active semispace (to sweep newly copied objects // during a scavenge collection). Address ToSpaceLow() { return to_space_->low(); } Address ToSpaceHigh() { return to_space_->high(); } // Offsets from the beginning of the semispaces. int ToSpaceOffsetForAddress(Address a) { return to_space_->SpaceOffsetForAddress(a); } int FromSpaceOffsetForAddress(Address a) { return from_space_->SpaceOffsetForAddress(a); } bool ToSpaceContains(Object* o) { return to_space_->Contains(o); } bool FromSpaceContains(Object* o) { return from_space_->Contains(o); } bool ToSpaceContains(Address a) { return to_space_->Contains(a); } bool FromSpaceContains(Address a) { return from_space_->Contains(a); } void RecordAllocation(HeapObject* obj); void RecordPromotion(HeapObject* obj);#endif private: // The current and maximum capacities of a semispace. int capacity_; int maximum_capacity_; // The semispaces. SemiSpace* to_space_; SemiSpace* from_space_; // Start address and bit mask for containment testing. Address start_; uint32_t address_mask_; uint32_t object_mask_; uint32_t object_expected_; // Allocation pointer and limit for normal allocation and allocation during // mark-compact collection. AllocationInfo allocation_info_; AllocationInfo mc_forwarding_info_; // Implementation of AllocateRaw and MCAllocateRaw. inline Object* AllocateRawInternal(int size_in_bytes, AllocationInfo* alloc_info); friend class SemiSpaceIterator; public: TRACK_MEMORY("NewSpace")};
AI代码助手复制代码
newSpace的很多功能但是靠semiSpace来实现的。他负责内存的具体分配。但不负责内存的申请。还有些是和gc相关的功能,后续再分析。
// 分为两个spaceNewSpace::NewSpace(int initial_semispace_capacity, int maximum_semispace_capacity) { ASSERT(initial_semispace_capacity <= maximum_semispace_capacity); ASSERT(IsPowerOf2(maximum_semispace_capacity)); maximum_capacity_ = maximum_semispace_capacity; capacity_ = initial_semispace_capacity; to_space_ = new SemiSpace(capacity_, maximum_capacity_); from_space_ = new SemiSpace(capacity_, maximum_capacity_);}// 设置需要管理的地址空间,start是首地址,size是大小bool NewSpace::Setup(Address start, int size) { ASSERT(size == 2 * maximum_capacity_); ASSERT(IsAddressAligned(start, size, 0)); // to区 if (to_space_ == NULL || !to_space_->Setup(start, maximum_capacity_)) { return false; } // from区,和to区一人一半 if (from_space_ == NULL || !from_space_->Setup(start + maximum_capacity_, maximum_capacity_)) { return false; } // 开始地址 start_ = start; /* address_mask的高位是地址的有效位, size是只有一位为一,减一后一变成0,一右边 的全部0位变成1,然后取反,高位的0变成1,再加上size中本来的1, 即从左往右的1位地址有效位 */ address_mask_ = ~(size - 1); // 参考semiSpace的分析 object_mask_ = address_mask_ | kHeapObjectTag; object_expected_ = reinterpret_cast<uint32_t>(start) | kHeapObjectTag; // 初始化管理的地址的信息 allocation_info_.top = to_space_->low(); allocation_info_.limit = to_space_->high(); mc_forwarding_info_.top = NULL; mc_forwarding_info_.limit = NULL; ASSERT_SEMISPACE_ALLOCATION_INFO(allocation_info_, to_space_); return true;}// 重置属性,不负责内存的释放void NewSpace::TearDown() { start_ = NULL; capacity_ = 0; allocation_info_.top = NULL; allocation_info_.limit = NULL; mc_forwarding_info_.top = NULL; mc_forwarding_info_.limit = NULL; if (to_space_ != NULL) { to_space_->TearDown(); delete to_space_; to_space_ = NULL; } if (from_space_ != NULL) { from_space_->TearDown(); delete from_space_; from_space_ = NULL; }}// 翻转,在gc中调用void NewSpace::Flip() { SemiSpace* tmp = from_space_; from_space_ = to_space_; to_space_ = tmp;}// 扩容bool NewSpace::Double() { ASSERT(capacity_ <= maximum_capacity_ / 2); // TODO(1240712): Failure to double the from space can result in // semispaces of different sizes. In the event of that failure, the // to space doubling should be rolled back before returning false. if (!to_space_->Double() || !from_space_->Double()) return false; capacity_ *= 2; // 从新扩容的地址开始分配内存,即老内存的末端。 allocation_info_.limit = to_space_->high(); ASSERT_SEMISPACE_ALLOCATION_INFO(allocation_info_, to_space_); return true;}// 重置管理内存分配的指针void NewSpace::ResetAllocationInfo() { allocation_info_.top = to_space_->low(); allocation_info_.limit = to_space_->high(); ASSERT_SEMISPACE_ALLOCATION_INFO(allocation_info_, to_space_);}void NewSpace::MCResetRelocationInfo() { mc_forwarding_info_.top = from_space_->low(); mc_forwarding_info_.limit = from_space_->high(); ASSERT_SEMISPACE_ALLOCATION_INFO(mc_forwarding_info_, from_space_);}void NewSpace::MCCommitRelocationInfo() { // Assumes that the spaces have been flipped so that mc_forwarding_info_ is // valid allocation info for the to space. allocation_info_.top = mc_forwarding_info_.top; allocation_info_.limit = to_space_->high(); ASSERT_SEMISPACE_ALLOCATION_INFO(allocation_info_, to_space_);}
AI代码助手复制代码
我们看到实现里没有很多具体的逻辑,只是对属性进行操作,或者把操作下发到semiSpace。下面看一下内存分配的函数。
// 分配内存Object* NewSpace::AllocateRawInternal(int size_in_bytes, AllocationInfo* alloc_info) { Address new_top = alloc_info->top + size_in_bytes; // 内存不够了 if (new_top > alloc_info->limit) { return Failure::RetryAfterGC(size_in_bytes, NEW_SPACE); } // 地址+低一位的标记 Object* obj = HeapObject::FromAddress(alloc_info->top); // 更新指针,指向下一块可分配的内存 alloc_info->top = new_top;#ifdef DEBUG SemiSpace* space = (alloc_info == &allocation_info_) ? to_space_ : from_space_; ASSERT(space->low() <= alloc_info->top && alloc_info->top <= space->high() && alloc_info->limit == space->high());#endif return obj;}}
AI代码助手复制代码
内存管理,主要是通过开始指针、结束指针、指向当前可分配的内存的指针来进行管理。每次分配内存都会修改当前指针的值。
感谢各位的阅读,以上就是“js引擎SemiSpace怎么实现”的内容了,经过本文的学习后,相信大家对js引擎SemiSpace怎么实现这一问题有了更深刻的体会,具体使用情况还需要大家实践验证。这里是亿速云,小编将为大家推送更多相关知识点的文章,欢迎关注!
亿速云「云服务器」,即开即用、新一代英特尔至强铂金CPU、三副本存储NVMe SSD云盘,价格低至29元/月。点击查看>>
免责声明:本站发布的内容(图片、视频和文字)以原创、转载和分享为主,文章观点不代表本网站立场,如果涉及侵权请联系站长邮箱:is@yisu.com进行举报,并提供相关证据,一经查实,将立刻删除涉嫌侵权内容。
原文链接:https://my.oschina.net/u/4217331/blog/4379435