本篇内容介绍了“PyTorch环境怎么配置”的有关知识,在实际案例的操作过程中,不少人都会遇到这样的困境,接下来就让小编带领大家学习一下如何处理这些情况吧!希望大家仔细阅读,能够学有所成!
1. 环境配置
环境要求:
配置:
torch.backends.cudnn.enabled
选项更改为False。CenterNet_ROOT=/path/to/clone/CenterNetgit clone https://github.com/zzzxxxttt/pytorch_simple_CenterNet_45 $CenterNet_ROOT
cd $CenterNet_ROOT/lib/cocoapi/PythonAPImakepython setup.py install --user
$CenterNet_ROOT/lib/DCNv2_old
重命名为
$CenterNet_ROOT/lib/DCNv2
$CenterNet_ROOT/lib/DCNv2_new
重命名为
$CenterNet_ROOT/lib/DCNv2
.cd $CenterNet_ROOT/lib/DCNv2./make.sh
cd $CenterNet_ROOT/lib/nmsmake
对于COCO格式的数据集,下载链接在:http://cocodataset.org/#download。将annotations, train2017, val2017, test2017放在$CenterNet_ROOT/data/coco
对于Pascal VOC格式的数据集,下载VOC转为COCO以后的数据集:
网盘链接:https://pan.baidu.com/share/init?surl=z6BtsKPHh3MnbfT25Y4wYw
密码:4iu2
下载以后将annotations, images, VOCdevkit放在$CenterNet_ROOT/data/voc
PS:以上两者是官方数据集,如果制作自己的数据集的话可以往下看。
网盘链接:https://pan.baidu.com/s/1tp9-5CAGwsX3VUSdV276Fg
密码:y1z4
将下载的权重checkpoint.t7放到$CenterNet_ROOT/ckpt/pretrain
中。
这个版本提供的代码是针对官方COCO或者官方VOC数据集进行配置的,所以有一些细节需要修改。
由于笔者习惯VOC格式数据集,所以以Pascal VOC格式为例,修改自己的数据集。
笔者只有一个类,‘dim target’,所以按照一个类来修改,其他的类别也很容易修改。
VOC_NAMES = ['__background__', "aeroplane", "bicycle", "bird", "boat", "bottle", "bus", "car", "cat", "chair", "cow", "diningtable", "dog", "horse", "motorbike", "person", "pottedplant", "sheep", "sofa", "train", "tvmonitor"]
修改为自己类别的名称:
VOC_NAMES = ['__background__', 'dim target']
num_classes=20修改为自己对应的类别个数num_classes=1
self.valid_ids = np.arange(1, 21, dtype=np.int32)中的21修改为类别数目+1
VOC格式数据集中没有annotations中所需要的json文件,这部分需要重新构建。
下面是一个VOC转COCO格式的脚本,需要改xml path和json file的名称。
import xml.etree.ElementTree as ETimport osimport jsoncoco = dict()coco['images'] = []coco['type'] = 'instances'coco['annotations'] = []coco['categories'] = []category_set = dict()image_set = set()category_item_id = 0image_id = 20200000000annotation_id = 0def addCatItem(name): global category_item_id category_item = dict() category_item['supercategory'] = 'none' category_item_id += 1 category_item['id'] = category_item_id category_item['name'] = name coco['categories'].append(category_item) category_set[name] = category_item_id return category_item_iddef addImgItem(file_name, size): global image_id if file_name is None: raise Exception('Could not find filename tag in xml file.') if size['width'] is None: raise Exception('Could not find width tag in xml file.') if size['height'] is None: raise Exception('Could not find height tag in xml file.') image_id += 1 image_item = dict() image_item['id'] = image_id image_item['file_name'] = file_name image_item['width'] = size['width'] image_item['height'] = size['height'] coco['images'].append(image_item) image_set.add(file_name) return image_iddef addAnnoItem(object_name, image_id, category_id, bbox): global annotation_id annotation_item = dict() annotation_item['segmentation'] = [] seg = [] #bbox[] is x,y,w,h #left_top seg.append(bbox[0]) seg.append(bbox[1]) #left_bottom seg.append(bbox[0]) seg.append(bbox[1] + bbox[3]) #right_bottom seg.append(bbox[0] + bbox[2]) seg.append(bbox[1] + bbox[3]) #right_top seg.append(bbox[0] + bbox[2]) seg.append(bbox[1]) annotation_item['segmentation'].append(seg) annotation_item['area'] = bbox[2] * bbox[3] annotation_item['iscrowd'] = 0 annotation_item['ignore'] = 0 annotation_item['image_id'] = image_id annotation_item['bbox'] = bbox annotation_item['category_id'] = category_id annotation_id += 1 annotation_item['id'] = annotation_id coco['annotations'].append(annotation_item)def parseXmlFiles(xml_path): for f in os.listdir(xml_path): if not f.endswith('.xml'): continue real_file_name = f.split(".")[0] + ".jpg" bndbox = dict() size = dict() current_image_id = None current_category_id = None file_name = None size['width'] = None size['height'] = None size['depth'] = None xml_file = os.path.join(xml_path, f) print(xml_file) tree = ET.parse(xml_file) root = tree.getroot() if root.tag != 'annotation': raise Exception( 'pascal voc xml root element should be annotation, rather than {}' .format(root.tag)) #elem is <folder>, <filename>, <size>, <object> for elem in root: current_parent = elem.tag current_sub = None object_name = None if elem.tag == 'folder': continue if elem.tag == 'filename': file_name = real_file_name #elem.text if file_name in category_set: raise Exception('file_name duplicated') #add img item only after parse <size> tag elif current_image_id is None and file_name is not None and size[ 'width'] is not None: # print(file_name, "===", image_set) if file_name not in image_set: current_image_id = addImgItem(file_name, size) print('add image with {} and {}'.format(file_name, size)) else: pass # raise Exception('duplicated image: {}'.format(file_name)) #subelem is <width>, <height>, <depth>, <name>, <bndbox> for subelem in elem: bndbox['xmin'] = None bndbox['xmax'] = None bndbox['ymin'] = None bndbox['ymax'] = None current_sub = subelem.tag if current_parent == 'object' and subelem.tag == 'name': object_name = subelem.text if object_name not in category_set: current_category_id = addCatItem(object_name) else: current_category_id = category_set[object_name] elif current_parent == 'size': if size[subelem.tag] is not None: raise Exception('xml structure broken at size tag.') size[subelem.tag] = int(subelem.text) #option is <xmin>, <ymin>, <xmax>, <ymax>, when subelem is <bndbox> for option in subelem: if current_sub == 'bndbox': if bndbox[option.tag] is not None: raise Exception( 'xml structure corrupted at bndbox tag.') bndbox[option.tag] = int(option.text) #only after parse the <object> tag if bndbox['xmin'] is not None: if object_name is None: raise Exception('xml structure broken at bndbox tag') if current_image_id is None: raise Exception('xml structure broken at bndbox tag') if current_category_id is None: raise Exception('xml structure broken at bndbox tag') bbox = [] #x bbox.append(bndbox['xmin']) #y bbox.append(bndbox['ymin']) #w bbox.append(bndbox['xmax'] - bndbox['xmin']) #h bbox.append(bndbox['ymax'] - bndbox['ymin']) print('add annotation with {},{},{},{}'.format( object_name, current_image_id, current_category_id, bbox)) addAnnoItem(object_name, current_image_id, current_category_id, bbox)if __name__ == '__main__': xml_path = './annotations/test' json_file = './pascal_test2020.json' #'./pascal_trainval0712.json' parseXmlFiles(xml_path) json.dump(coco, open(json_file, 'w'))
注意这里json文件的命名要通过datasets/pascal.py中第44到48行的内容确定的。
self.data_dir = os.path.join(data_dir, 'voc')self.img_dir = os.path.join(self.data_dir, 'images')_ann_name = {'train': 'trainval0712', 'val': 'test2007'}self.annot_path = os.path.join(self.data_dir, 'annotations', 'pascal_%s.json' % _ann_name[split])
这里笔者为了方便命名对这些字段进行了修改:
self.data_dir = os.path.join(data_dir, 'voc') # ./data/vocself.img_dir = os.path.join(self.data_dir, 'images') # ./data/voc/images_ann_name = {'train': 'train2020', 'val': 'test2020'}# 意思是需要json格式数据集self.annot_path = os.path.join(self.data_dir, 'annotations', 'pascal_%s.json' % _ann_name[split])
所以要求json的命名可以按照以下格式准备:
# ./data/voc/annotations# - pascal_train2020# - pascal_test2020
数据集总体格式为:
- data - voc - annotations - pascal_train2020.json - pascal_test2020.json - images - *.jpg - VOCdevkit(这个文件夹主要是用于测评) - VOC2007 - Annotations - *.xml - JPEGImages - *.jpg - ImageSets - Main - train.txt - val.txt - trainval.txt - test.txt
在datasets/pascal.py中21-22行,标准差和方差最好替换为自己的数据集的标准差和方差。
VOC_MEAN = [0.485, 0.456, 0.406]VOC_STD = [0.229, 0.224, 0.225]
训练命令比较多,可以写一个shell脚本来完成。
python train.py --log_name pascal_resdcn18_384_dp \ --dataset pascal \ --arch resdcn_18 \ --img_size 384 \ --lr 1.25e-4 \ --lr_step 45,60 \ --batch_size 32 \ --num_epochs 70 \ --num_workers 10
log name代表记录的日志的名称。
dataset设置pascal代表使用的是pascal voc格式。
arch代表选择的backbone的类型,有以下几种:
img size控制图片长和宽。
lr和lr_step控制学习率大小及变化。
batch size是一个批次处理的图片个数。
num epochs代表学习数据集的总次数。
num workers代表开启多少个线程加载数据集。
测试命令很简单,需要注意的是img size要和训练的时候设置的一致。
python test.py --log_name pascal_resdcn18_384_dp \ --dataset pascal \ --arch resdcn_18 \ --img_size 384
flip test属于TTA(Test Time Augmentation),可以一定程度上提高mAP。
# flip testpython test.py --log_name pascal_resdcn18_384_dp \ --dataset pascal \ --arch resdcn_18 \ --img_size 384 \ --test_flip
以下是作者在COCO和VOC数据集上以不同的图片分辨率和TTA方法得到的结果。
Model | Training image size | mAP |
---|---|---|
Hourglass-104 (DP) | 512 | 39.9/42.3/45.0 |
Hourglass-104 (DDP) | 512 | 40.5/42.6/45.3 |
Model | Training image size | mAP |
---|---|---|
ResDCN-18 (DDP) | 384 | 71.19/72.99 |
ResDCN-18 (DDP) | 512 | 72.76/75.69 |
“PyTorch环境怎么配置”的内容就介绍到这里了,感谢大家的阅读。如果想了解更多行业相关的知识可以关注亿速云网站,小编将为大家输出更多高质量的实用文章!
亿速云「云服务器」,即开即用、新一代英特尔至强铂金CPU、三副本存储NVMe SSD云盘,价格低至29元/月。点击查看>>
免责声明:本站发布的内容(图片、视频和文字)以原创、转载和分享为主,文章观点不代表本网站立场,如果涉及侵权请联系站长邮箱:is@yisu.com进行举报,并提供相关证据,一经查实,将立刻删除涉嫌侵权内容。
原文链接:https://my.oschina.net/u/4580321/blog/4407946