这篇文章主要介绍“sharding-jdbc路由的原理及应用”,在日常操作中,相信很多人在sharding-jdbc路由的原理及应用问题上存在疑惑,小编查阅了各式资料,整理出简单好用的操作方法,希望对大家解答”sharding-jdbc路由的原理及应用”的疑惑有所帮助!接下来,请跟着小编一起来学习吧!
路由引擎主要分为两大类:
分片路由(直接路由、标准路由、笛卡尔积路由)
广播路由(全库表路由、全库路由、全实例路由、单播路由、阻断路由)
具体路由类型含义参考官网路由引擎
https://shardingsphere.apache.org/document/current/cn/features/sharding/principle/route/
主要分析查询路由
1.路由ParsingSQLRouter#route入口
@RequiredArgsConstructor public final class ParsingSQLRouter implements ShardingRouter { @Override public SQLRouteResult route(final SQLStatement sqlStatement, final List<Object> parameters) { //优化,处理条件占位符参数与真实数据、分页、group by etc. OptimizedStatement optimizedStatement = OptimizeEngineFactory.newInstance(shardingRule, shardingMetaData.getTable(), sqlStatement, parameters).optimize(); boolean needMergeShardingValues = isNeedMergeShardingValues(sqlStatement); if (optimizedStatement instanceof ShardingWhereOptimizedStatement && needMergeShardingValues) { checkSubqueryShardingValues(sqlStatement, ((ShardingWhereOptimizedStatement) optimizedStatement).getShardingConditions()); mergeShardingConditions(((ShardingWhereOptimizedStatement) optimizedStatement).getShardingConditions()); } //路由入口 RoutingResult routingResult = RoutingEngineFactory.newInstance(shardingRule, shardingMetaData.getDataSource(), optimizedStatement).route(); if (needMergeShardingValues) { Preconditions.checkState(1 == routingResult.getRoutingUnits().size(), "Must have one sharding with subquery."); } if (optimizedStatement instanceof ShardingInsertOptimizedStatement) { setGeneratedValues((ShardingInsertOptimizedStatement) optimizedStatement); } SQLRouteResult result = new SQLRouteResult(optimizedStatement); result.setRoutingResult(routingResult); return result; } ... ... }
2.路由工厂并路由RoutingEngineFactory#route
@NoArgsConstructor(access = AccessLevel.PRIVATE) public final class RoutingEngineFactory { /** * Create new instance of routing engine. * * @param shardingRule sharding rule * @param shardingDataSourceMetaData sharding data source meta data * @param optimizedStatement optimized statement * @return new instance of routing engine */ public static RoutingEngine newInstance(final ShardingRule shardingRule, final ShardingDataSourceMetaData shardingDataSourceMetaData, final OptimizedStatement optimizedStatement) { SQLStatement sqlStatement = optimizedStatement.getSQLStatement(); Collection<String> tableNames = sqlStatement.getTables().getTableNames(); //全库路由 if (sqlStatement instanceof TCLStatement) { return new DatabaseBroadcastRoutingEngine(shardingRule); } //全库表路由 if (sqlStatement instanceof DDLStatement) { return new TableBroadcastRoutingEngine(shardingRule, optimizedStatement); } //阻断路由 if (sqlStatement instanceof DALStatement) { return getDALRoutingEngine(shardingRule, sqlStatement, tableNames); } //全实例路由 if (sqlStatement instanceof DCLStatement) { return getDCLRoutingEngine(shardingRule, optimizedStatement, shardingDataSourceMetaData); } //默认库路由 if (shardingRule.isAllInDefaultDataSource(tableNames)) { return new DefaultDatabaseRoutingEngine(shardingRule, tableNames); } //全库路由 if (shardingRule.isAllBroadcastTables(tableNames)) { return sqlStatement instanceof SelectStatement ? new UnicastRoutingEngine(shardingRule, tableNames) : new DatabaseBroadcastRoutingEngine(shardingRule); } //单播路由 if (optimizedStatement instanceof ShardingWhereOptimizedStatement && ((ShardingWhereOptimizedStatement) optimizedStatement).getShardingConditions().isAlwaysFalse() || tableNames.isEmpty()) { return new UnicastRoutingEngine(shardingRule, tableNames); } Preconditions.checkState(optimizedStatement instanceof ShardingWhereOptimizedStatement); //分片路由 return getShardingRoutingEngine(shardingRule, (ShardingWhereOptimizedStatement) optimizedStatement, tableNames); } ... ... private static RoutingEngine getShardingRoutingEngine(final ShardingRule shardingRule, final ShardingWhereOptimizedStatement optimizedStatement, final Collection<String> tableNames) { ///根据解析出来逻辑表获取分片表,如:SELECT i.* FROM t_order o, t_order_item i WHERE o.order_id = i.order_id and o.order_id = ? //则shardingTableNames为t_order,t_order_item Collection<String> shardingTableNames = shardingRule.getShardingLogicTableNames(tableNames); //满足以下两个条件走标准路由,否则走复合路由 //1、是否只有一张分片表 //2、绑定的逻辑表(配置绑定表)是否包含所有分片表 if (1 == shardingTableNames.size() || shardingRule.isAllBindingTables(shardingTableNames)) { //标准路由,获取第一张表路由即可,参考官网案例说明 return new StandardRoutingEngine(shardingRule, shardingTableNames.iterator().next(), optimizedStatement); } // TODO config for cartesian set //复合路由 return new ComplexRoutingEngine(shardingRule, tableNames, optimizedStatement); } }
3.标准路由StandardRoutingEngine#route
标准路由场景
t_order和t_order_item是分库分表并且是绑定表;如第二步55行判断shardingTableNames.size()=1或者shardingTableNames都是绑定表时,这时会走标准路由
@RequiredArgsConstructor public final class StandardRoutingEngine implements RoutingEngine { //分库分表规则 private final ShardingRule shardingRule; //逻辑表 t_order private final String logicTableName; //sql解析并优化后的结果 private final ShardingWhereOptimizedStatement optimizedStatement; @Override public RoutingResult route() { //insert、update、delete判断表是否是单表 if (isDMLForModify(optimizedStatement.getSQLStatement()) && !optimizedStatement.getSQLStatement().getTables().isSingleTable()) { throw new SQLParsingException("Cannot support Multiple-Table for '%s'.", optimizedStatement.getSQLStatement()); } //路由数据节点、封装路由结果 return generateRoutingResult(getDataNodes(shardingRule.getTableRule(logicTableName))); } ... ... private RoutingResult generateRoutingResult(final Collection<DataNode> routedDataNodes) { RoutingResult result = new RoutingResult(); //根据数据节点封装路由单元、表单元 for (DataNode each : routedDataNodes) { //路由单元 demo_ds_0 RoutingUnit routingUnit = new RoutingUnit(each.getDataSourceName()); //表单元 逻辑表:真实表 t_order:t_order_0 routingUnit.getTableUnits().add(new TableUnit(logicTableName, each.getTableName())); result.getRoutingUnits().add(routingUnit); } return result; } private Collection<DataNode> getDataNodes(final TableRule tableRule) { //判断database、table分片策略同时是Hint(直接路由) if (shardingRule.isRoutingByHint(tableRule)) { return routeByHint(tableRule); } //database、table分片策略都不是Hint if (isRoutingByShardingConditions(tableRule)) { //根据分片条件、策略路由到对应的database、table,同对分片键判断 return routeByShardingConditions(tableRule); } //database或table分片策略有一个是Hint return routeByMixedConditions(tableRule); } ... ... }
4.复合路由CartesianRoutingEngine#route
复杂路由场景
t_order和t_order_item是分库分表并且是绑定表;新增一个t_user分库分表,这时第二步的55行,shardingTableNames.size()=3,且t_user未配置成绑定表,这时会走复合路由
@RequiredArgsConstructor public final class ComplexRoutingEngine implements RoutingEngine { //分库分表规则 private final ShardingRule shardingRule; //逻辑表t_order、t_order_item private final Collection<String> logicTables; //sql解析并优化后的结果 private final ShardingWhereOptimizedStatement optimizedStatement; @Override public RoutingResult route() { Collection<RoutingResult> result = new ArrayList<>(logicTables.size()); Collection<String> bindingTableNames = new TreeSet<>(String.CASE_INSENSITIVE_ORDER); //遍历逻辑表 for (String each : logicTables) { Optional<TableRule> tableRule = shardingRule.findTableRule(each); //表是否配置了分库分表规则 if (tableRule.isPresent()) { // 如果绑定关系表已经处理过,那么不需要再处理,如t_order处理过,由于t_order_item与其是绑定关系,那么不需要再处理; if (!bindingTableNames.contains(each)) { //构建标准路由并路由 result.add(new StandardRoutingEngine(shardingRule, tableRule.get().getLogicTable(), optimizedStatement).route()); } //根据逻辑表查找对应的所有绑定表,如根据t_order就能查询到t_order、t_order_item,因为t_order和t_order_item是绑定表 Optional<BindingTableRule> bindingTableRule = shardingRule.findBindingTableRule(each); if (bindingTableRule.isPresent()) { //添加绑定表 bindingTableNames.addAll(Lists.transform(bindingTableRule.get().getTableRules(), new Function<TableRule, String>() { @Override public String apply(final TableRule input) { return input.getLogicTable(); } })); } } } if (result.isEmpty()) { throw new ShardingException("Cannot find table rule and default data source with logic tables: '%s'", logicTables); } if (1 == result.size()) { return result.iterator().next(); } //笛卡尔积路由 return new CartesianRoutingEngine(result).route(); } }
5.笛卡尔积路由
笛卡尔积路由场景
笛卡尔路由是最复杂的情况,它无法根据绑定表的关系定位分片规则,因此非绑定表之间的关联查询需要拆解为笛卡尔积组合执行。如上面事例新增的t_user分库分表,t_user和t_order未配置绑定表关系,如下SQL就需要走笛卡尔积路由
SELECT * FROM t_user u JOIN t_order o ON u.user_id = o.user_id AND u.user_id in(1 , 2)
@RequiredArgsConstructor public final class CartesianRoutingEngine implements RoutingEngine { private final Collection<RoutingResult> routingResults; @Override public RoutingResult route() { RoutingResult result = new RoutingResult(); //获取数据源对应的逻辑表集合 for (Entry<String, Set<String>> entry : getDataSourceLogicTablesMap().entrySet()) { //通过数据源名称和逻辑表的名称获取实际的表组,即[["t_user_0","t_user_1"],["t_order_0", "t_order_1]] List<Set<String>> actualTableGroups = getActualTableGroups(entry.getKey(), entry.getValue()); //把逻辑表名封装成TableUnit表单元 //TableUnit包含数据源名称、逻辑表名、实际表名(通过这三个属性可以确定最终访问的表) List<Set<TableUnit>> routingTableGroups = toRoutingTableGroups(entry.getKey(), actualTableGroups); //封装RoutingUnit路由单元 //cartesianProduct计算笛卡尔积 result.getRoutingUnits().addAll(getRoutingUnits(entry.getKey(), Sets.cartesianProduct(routingTableGroups))); } return result; } private Map<String, Set<String>> getDataSourceLogicTablesMap() { //获取数据源的交集,如t_user逻辑表路由到数据源demo_ds_0,而t_order表路由到数据源ds_demo_0和demo_ds_1,数据源交集就是demo_ds_0 //事例SELECT * FROM t_user_0 u JOIN t_order_0 o ON u.user_id = o.user_id WHERE u.user_id in(1, 2); t_user和t_order不是绑定表关系 //笛卡尔路由是最复杂的情况,它无法根据绑定表的关系定位分片规则,因此非绑定表之间的关联查询需要拆解为笛卡尔积组合执行 Collection<String> intersectionDataSources = getIntersectionDataSources(); Map<String, Set<String>> result = new HashMap<>(routingResults.size()); //遍历标准路由后的结果集 for (RoutingResult each : routingResults) { //通过数据源的名称获取数据源和逻辑表之间的映射关系 for (Entry<String, Set<String>> entry : each.getDataSourceLogicTablesMap(intersectionDataSources).entrySet()) { if (result.containsKey(entry.getKey())) { result.get(entry.getKey()).addAll(entry.getValue()); } else { result.put(entry.getKey(), entry.getValue()); } } } // 返回数据源-逻辑表集合组成的Map,这里就是{"demo_ds_0":["t_user", "t_order"]} return result; } private Collection<String> getIntersectionDataSources() { Collection<String> result = new HashSet<>(); for (RoutingResult each : routingResults) { if (result.isEmpty()) { result.addAll(each.getDataSourceNames()); } //交集 result.retainAll(each.getDataSourceNames()); } return result; } ... ... }
笛卡尔积结果如下:
6.直接路由
直接路由场景
满足直接路由的条件相对苛刻,它需要通过Hint(使用HintAPI直接指定路由至库表)方式分片,并且是只分库不分表的前提下,则可以避免SQL解析和之后的结果归并
假如路由算法为value % 2,当一个逻辑库t_order对应2个真实库t_order_0和t_order_1时,路由后SQL将在t_order_1上执行。下方是使用API的代码样例:
String sql = "SELECT * FROM t_order"; try ( //获取Hint实例 HintManager hintManager = HintManager.getInstance(); Connection conn = dataSource.getConnection(); PreparedStatement pstmt = conn.prepareStatement(sql)) { //设置数据源分片个数 hintManager.setDatabaseShardingValue(3); try (ResultSet rs = pstmt.executeQuery()) { while (rs.next()) { //... } } }
@RequiredArgsConstructor public final class DatabaseHintRoutingEngine implements RoutingEngine { //数据源集群 private final Collection<String> dataSourceNames; //Hint数据分片策略 private final HintShardingStrategy databaseShardingStrategy; @Override public RoutingResult route() { //获取当前线程数据源分片 Collection<Comparable<?>> shardingValues = HintManager.getDatabaseShardingValues(); Preconditions.checkState(!shardingValues.isEmpty()); Collection<String> routingDataSources; //根据分片策略路由 routingDataSources = databaseShardingStrategy.doSharding(dataSourceNames, Collections.<RouteValue>singletonList(new ListRouteValue<>("", "", shardingValues))); Preconditions.checkState(!routingDataSources.isEmpty(), "no database route info"); RoutingResult result = new RoutingResult(); //封装路由单元 for (String each : routingDataSources) { result.getRoutingUnits().add(new RoutingUnit(each)); } return result; } }
到此,关于“sharding-jdbc路由的原理及应用”的学习就结束了,希望能够解决大家的疑惑。理论与实践的搭配能更好的帮助大家学习,快去试试吧!若想继续学习更多相关知识,请继续关注亿速云网站,小编会继续努力为大家带来更多实用的文章!
免责声明:本站发布的内容(图片、视频和文字)以原创、转载和分享为主,文章观点不代表本网站立场,如果涉及侵权请联系站长邮箱:is@yisu.com进行举报,并提供相关证据,一经查实,将立刻删除涉嫌侵权内容。