温馨提示×

温馨提示×

您好,登录后才能下订单哦!

密码登录×
登录注册×
其他方式登录
点击 登录注册 即表示同意《亿速云用户服务条款》

Matlab怎么实现时间序列预测分类

发布时间:2021-08-02 09:29:12 来源:亿速云 阅读:679 作者:chen 栏目:开发技术

这篇文章主要介绍“Matlab怎么实现时间序列预测分类”,在日常操作中,相信很多人在Matlab怎么实现时间序列预测分类问题上存在疑惑,小编查阅了各式资料,整理出简单好用的操作方法,希望对大家解答”Matlab怎么实现时间序列预测分类”的疑惑有所帮助!接下来,请跟着小编一起来学习吧!

目录
  • 一、数据准备

  • 二、时间序列预测分类

    • 1、输入为xt,输出是yt

    • 2、有x值,有y值:NARX

      • (1)选择模型类型

      • (2)选择输出,只有y_t

      • (3)选择70%用来作为训练数据,15%用来作为验证使用,15%用来测试

      • (4)选择delay

      • (5)开始训练

      • (6)得到参数

      • (7)将神经网络导出代码

    • 3、无x,有y值:NAR

    • 三、总结

      Matlab从2010b版本以后,神经网络工具箱已经升级为7.0,功能大大加强。在之前的版本做时间预测是比较麻烦操作的,MathWorks公司对时间序列预测做了详细的解决,跑模型非常简便。

      下面通过一个例子演示在Matlab实现时间序列预测。

      一、数据准备

      极客范儿在夏天吹电扇的体温变化

      时间风速温度
      0137.21405
      0.124571.0137.26016
      0.249151.0237.26324
      0.373731.0337.31242
      0.49831.0437.3155
      0.622581.0537.36468
      0.747451.0637.36776
      0.872031.0737.41694
      0.996611.0837.42002
      % 原始数据读入到Matlab中
      rawData=xlsread('time_series_data.xlsx','sheet1','A2:C52);
      % 第一列时间,第二列风速,第三列温度
      % yt第三列
      y_t=rawData(:,3);
      % xt第二列
      x_t=rawData(:,2);

      二、时间序列预测分类

      时间序列预测分为三类:

      1、输入为xt,输出是yt

      即有过去的输入xt,也有过去的输出yt,同时当前的输出不仅依赖于过去的输入,也同时依赖于过去的输出

      过去时间段温度的变化,预测将来某个时间温度的变化,这种情况就是只有过去的输出

      %   x_t - 时间序列输入
      %   y_t - 反馈时间序列
      
      X = tonndata(x_t,false,false);
      T = tonndata(y_t,false,false);
      
      % 选择训练功能
      % 'trainlm'通常是最快
      % 'trainbr'耗时较长,但可能更适合解决挑战性的问题
      % 'trainscg'使用更少的内存。适用于低内存情况
      trainFcn = 'trainlm';  % Levenberg-Marquardt反向传播
      
      % 创建一个非线性自回归网络
      feedbackDelays = 1:6;
      hiddenLayerSize = 20;
      net = narnet(feedbackDelays,hiddenLayerSize,'open',trainFcn);
      
      % 为训练和模拟准备数据
      % PREPARETS函数为特定网络准备时间序列数据
      % 移动时间的最小量,以声明填充输入状态和层
      % 使用PREPARETS允许保留原始的时间序列数据不变,同时轻松定制它的网络与不同
      % 具有开环或闭环反馈模式的延迟数
      [x,xi,ai,t] = preparets(net,{},{},T);
      
      % 建立训练,验证,测试的数据
      net.divideParam.trainRatio = 70/100;
      net.divideParam.valRatio = 15/100;
      net.divideParam.testRatio = 15/100;
      
      % 训练静态神经网络 
      [net,tr] = train(net,x,t,xi,ai);
      
      % 测试神经网络
      y = net(x,xi,ai);
      e = gsubtract(t,y);
      performance = perform(net,t,y)
      
      % 查看神经网络
      view(net)
      
      % Plots
      % Uncomment these lines to enable various plots.
      %figure, plotperform(tr)
      %figure, plottrainstate(tr)
      %figure, ploterrhist(e)
      %figure, plotregression(t,y)
      %figure, plotresponse(t,y)
      %figure, ploterrcorr(e)
      %figure, plotinerrcorr(x,e)
      
      % 提前预测网络
      % 利用该网络进行多步预测
      % CLOSELOOP函数将反馈输入替换为直接输入
      % 从外部层连接
      nets = removedelay(net);
      nets.name = [net.name ' - Predict One Step Ahead'];
      view(netc)
      [xs,xis,ais,ts] = preparets(nets,X,{},T);
      ys = nets(xs,xis,ais);
      stepAheadPerformance = perform(nets,ts,ys)

      2、有x值,有y值:NARX

      只有过去的输出

      如果给环境加一个风扇,这时候有了风速,过去时间风速在改变,同时也在影响温度的改变

      Matlab现在提供时间序列预测工具箱,可以在图形界面上进行调参选择,使用命令ntstool打开时间序列预测工具箱

      类似股票的模型,只知道早上9:30开市到11:30的股票行情,预测11:30之后的股票行情,不考虑任何的输入

      (1)选择模型类型

      Matlab怎么实现时间序列预测分类

      (2)选择输出,只有y_t

      Matlab怎么实现时间序列预测分类

      (3)选择70%用来作为训练数据,15%用来作为验证使用,15%用来测试

      Matlab怎么实现时间序列预测分类

      (4)选择delay

      Matlab怎么实现时间序列预测分类

      (5)开始训练

      Matlab怎么实现时间序列预测分类

      (6)得到参数

      Matlab怎么实现时间序列预测分类
      Matlab怎么实现时间序列预测分类

      (7)将神经网络导出代码

      Matlab怎么实现时间序列预测分类

      3、无x,有y值:NAR

      没有线性的输入输出,很少遇到这种情况

      三、总结

      Matlab从2010b版本以后,使用图形界面训练网络调参,生成的代码与手敲的功能无异,Matlab时间序列预测工具箱实用而且好用。

      到此,关于“Matlab怎么实现时间序列预测分类”的学习就结束了,希望能够解决大家的疑惑。理论与实践的搭配能更好的帮助大家学习,快去试试吧!若想继续学习更多相关知识,请继续关注亿速云网站,小编会继续努力为大家带来更多实用的文章!

      向AI问一下细节

      免责声明:本站发布的内容(图片、视频和文字)以原创、转载和分享为主,文章观点不代表本网站立场,如果涉及侵权请联系站长邮箱:is@yisu.com进行举报,并提供相关证据,一经查实,将立刻删除涉嫌侵权内容。

      AI