这篇文章主要讲解了“Redis底层数据结构的详细介绍”,文中的讲解内容简单清晰,易于学习与理解,下面请大家跟着小编的思路慢慢深入,一起来研究和学习“Redis底层数据结构的详细介绍”吧!
Redis作为Key-Value存储系统,数据结构如下:
Redis没有表的概念,Redis实例所对应的db以编号区分,db本身就是key的命名空间。
比如:user:1000作为key值,表示在user这个命名空间下id为1000的元素,类似于user表的id=1000的行。
Redis中存在“数据库”的概念,该结构由redis.h中的redisDb定义。
当redis 服务器初始化时,会预先分配 16 个数据库
所有数据库保存到结构 redisServer 的一个成员 redisServer.db 数组中
redisClient中存在一个名叫db的指针指向当前使用的数据库
RedisDB结构体源码:
/* Redis database representation. There are multiple databases identified * by integers from 0 (the default database) up to the max configured * database. The database number is the 'id' field in the structure. */ typedef struct redisDb { dict *dict; /* 存储数据库所有的key-value */ dict *expires; /* 存储key的过期时间 */ dict *blocking_keys; /* blpop 存储阻塞key和客户端对象*/ dict *ready_keys; /* 阻塞后push 响应阻塞客户端 存储阻塞后push的key和客户端对象 */ dict *watched_keys; /* 存储watch监控的的key和客户端对象 */ int id; /* Database ID */ long long avg_ttl; /* 存储的数据库对象的平均ttl(time to live),用于统计 */ unsigned long expires_cursor; /* 循环过期检查的光标. */ list *defrag_later; /* 需要尝试去清理磁盘碎片的链表,会慢慢的清理 */ } redisDb;
id
id是数据库序号,为0-15(默认Redis有16个数据库)
dict
存储数据库所有的key-value,后面要详细讲解
expires
存储key的过期时间,后面要详细讲解
Value是一个对象
包含字符串对象,列表对象,哈希对象,集合对象和有序集合对象
结构信息概览
typedef struct redisObject { unsigned type:4; //类型 对象类型 unsigned encoding:4;//编码 // LRU_BITS为24bit 记录最后一次被命令程序访问的时间 unsigned lru:LRU_BITS; /* LRU time (relative to global lru_clock) or * LFU data (least significant 8 bits frequency * and most significant 16 bits access time). */ int refcount; //引用计数 void *ptr;//指向底层实现数据结构的指针 } robj;
4位type
type 字段表示对象的类型,占 4 位;
REDIS_STRING(字符串)、REDIS_LIST (列表)、REDIS_HASH(哈希)、REDIS_SET(集合)、REDIS_ZSET(有序集合)。
当我们执行 type 命令时,便是通过读取 RedisObject 的 type 字段获得对象的类型
127.0.0.1:6379> set a1 111 OK 127.0.0.1:6379> type a1 string
4位encoding
encoding 表示对象的内部编码,占 4 位
每个对象有不同的实现编码
Redis 可以根据不同的使用场景来为对象设置不同的编码,大大提高了 Redis 的灵活性和效率。
通过 object encoding 命令,可以查看对象采用的编码方式
127.0.0.1:6379> OBJECT encoding a1 "int"
24位LRU
lru 记录的是对象最后一次被命令程序访问的时间,( 4.0 版本占 24 位,2.6 版本占 22 位)。
高16位存储一个分钟数级别的时间戳,低8位存储访问计数(lfu : 最近访问次数)
lru----> 高16位: 最后被访问的时间
lfu----->低8位:最近访问次数
refcount
refcount 记录的是该对象被引用的次数,类型为整型。
refcount 的作用,主要在于对象的引用计数和内存回收。
当对象的refcount>1时,称为共享对象
Redis 为了节省内存,当有一些对象重复出现时,新的程序不会创建新的对象,而是仍然使用原来的对象。
ptr
ptr 指针指向具体的数据,比如:set hello world,ptr 指向包含字符串 world 的 SDS。
7种type 字符串对象
C语言: 字符数组 “\0”
Redis 使用了 SDS(Simple Dynamic String)。用于存储字符串和整型数据。
/* Note: sdshdr5 is never used, we just access the flags byte directly. * However is here to document the layout of type 5 SDS strings. */ struct __attribute__ ((__packed__)) sdshdr5 { unsigned char flags; /* 3 lsb of type, and 5 msb of string length */ char buf[]; }; struct __attribute__ ((__packed__)) sdshdr8 { uint8_t len; /* used */ uint8_t alloc; /* excluding the header and null terminator */ unsigned char flags; /* 3 lsb of type, 5 unused bits */ char buf[]; }; struct __attribute__ ((__packed__)) sdshdr16 { uint16_t len; /* used */ uint16_t alloc; /* excluding the header and null terminator */ unsigned char flags; /* 3 lsb of type, 5 unused bits */ char buf[]; }; struct __attribute__ ((__packed__)) sdshdr32 { uint32_t len; /* used */ uint32_t alloc; /* excluding the header and null terminator */ unsigned char flags; /* 3 lsb of type, 5 unused bits */ char buf[]; }; struct __attribute__ ((__packed__)) sdshdr64 { uint64_t len; /* used */ uint64_t alloc; /* excluding the header and null terminator */ unsigned char flags; /* 3 lsb of type, 5 unused bits */ char buf[]; };
buf[] 的长度=len+free+1
SDS的优势:
1.SDS 在 C 字符串的基础上加入了 free 和 len 字段,获取字符串长度:SDS 是 O(1),C 字符串是
O(n)。
buf数组的长度=free+len+1
2.SDS 由于记录了长度,在可能造成缓冲区溢出时会自动重新分配内存,杜绝了缓冲区溢出。
3.可以存取二进制数据,以字符串长度len来作为结束标识
C:
\0 空字符串 二进制数据包括空字符串,所以没有办法存取二进制数据
SDS :
非二进制 \0
二进制: 字符串长度 可以存二进制数据
使用场景:
SDS的主要应用在:存储字符串和整型数据、存储key、AOF缓冲区和用户输入缓冲。
跳跃表(重要)
跳跃表是有序集合(sorted-set)的底层实现,效率高,实现简单。
跳跃表的基本思想:
将有序链表中的部分节点分层,每一层都是一个有序链表。
查找
在查找时优先从最高层开始向后查找,当到达某个节点时,如果next节点值大于要查找的值或next指针指向null,则从当前节点下降一层继续向后查找。
举例:
查找元素9,按道理我们需要从头结点开始遍历,一共遍历8个结点才能找到元素9。
第一次分层:
遍历5次找到元素9(红色的线为查找路径)
第二次分层:
遍历4次找到元素9
第三层分层:
遍历4次找到元素9
这种数据结构,就是跳跃表,它具有二分查找的功能。
上面例子中,9个结点,一共4层,是理想的跳跃表。
通过抛硬币(概率1/2)的方式来决定新插入结点跨越的层数,每层都需要判断:
正面:插入上层
背面:不插入
达到1/2概率(计算次数)
删除
找到指定元素并删除每层的该元素即可
跳跃表特点:
每层都是一个有序链表
查找次数近似于层数(1/2)
底层包含所有元素
空间复杂度 O(n) 扩充了一倍
Redis跳跃表的实现
/* ZSETs use a specialized version of Skiplists */ typedef struct zskiplistNode { /* 存储字符串类型数据 redis3.0版本中使用robj类型表示,但是在redis4.0.1中直接使用sds类型表示 */ sds ele; /*存储排序的分值*/ double score; /*后退指针,指向当前节点最底层的前一个节点*/ struct zskiplistNode *backward; /*层,柔性数组,随机生成1-64的值*/ struct zskidictEntryplistLevel { struct zskiplistNode *forward; //指向本层下一个节点 unsigned long span; //本层下个节点到本节点的元素个数 } level[]; } zskiplistNode; typedef struct zskiplist { //表头节点和表尾节点 struct zskiplistNode *header, *tail; //表中节点的数量 unsigned long length; //表中层数最大的节点的层数 int level; } zskiplist;
完整的跳跃表结构体:
跳跃表的优势:
1、可以快速查找到需要的节点 O(logn)
2、可以在O(1)的时间复杂度下,快速获得跳跃表的头节点、尾结点、长度和高度。
应用场景:有序集合的实现
字典(重要)
字典dict又称散列表(hash),是用来存储键值对的一种数据结构。
Redis整个数据库是用字典来存储的。(K-V结构)
对Redis进行CURD操作其实就是对字典中的数据进行CURD操作。
数组
数组:用来存储数据的容器,采用头指针+偏移量的方式能够以O(1)的时间复杂度定位到数据所在的内存地址。
Redis 海量存储 快
Hash函数
Hash(散列),作用是把任意长度的输入通过散列算法转换成固定类型、固定长度的散列值。
hash函数可以把Redis里的key:包括字符串、整数、浮点数统一转换成整数。
key=100.1 String “100.1” 5位长度的字符串
Redis-cli :times 33
Redis-Server : MurmurHash
数组下标=hash(key)%数组容量(hash值%数组容量得到的余数)
Hash冲突
不同的key经过计算后出现数组下标一致,称为Hash冲突。
采用单链表在相同的下标位置处存储原始key和value
当根据key找Value时,找到数组下标,遍历单链表可以找出key相同的value
Redis字典实现包括:字典(dict)、Hash表(dictht)、Hash表节点(dictEntry)。
Hash表
typedef struct dictht { dictEntry **table; // 哈希表数组 unsigned long size; // 哈希表数组的大小 unsigned long sizemask; // 用于映射位置的掩码,值永远等于(size-1) unsigned long used; // 哈希表已有节点的数量,包含next单链表数据 } dictht;
1、hash表的数组初始容量为4,随着k-v存储量的增加需要对hash表数组进行扩容,新扩容量为当前量的一倍,即4,8,16,32
2、索引值=Hash值&掩码值(Hash值与Hash表容量取余)
Hash表节点
typedef struct dictEntry { void *key; // 键 union { // 值v的类型可以是以下4种类型 void *val; uint64_t u64; int64_t s64; double d; } v; struct dictEntry *next; // 指向下一个哈希表节点,形成单向链表 解决hash冲突, 单链表中会存储key和value } dictEntry;
key字段存储的是键值对中的键
v字段是个联合体,存储的是键值对中的值。
next指向下一个哈希表节点,用于解决hash冲突
dict字典
typedef struct dict { dictType *type; //该字典对应的特定操作函数 void *privdata; //上述类型函数对应的可选参数 dictht ht[2];/* 两张哈希表,存储键值对数据,ht[0]为原生哈希表,ht[1]为 rehash 哈希表 */ long rehashidx; /* rehash标识 当等于-1时表示没有在rehash,否则表示正在进行rehash操作, 存储的值表示hash表 ht[0]的rehash进行到哪个索引值(数组下标)*/ unsigned long iterators; /* 当前运行的迭代器数量 */ } dict;
type字段,指向dictType结构体,里边包括了对该字典操作的函数指针
typedef struct dictType { // 计算哈希值的函数 uint64_t (*hashFunction)(const void *key); // 复制键的函数 void *(*keyDup)(void *privdata, const void *key); // 比较键的函数 void *(*valDup)(void *privdata, const void *obj); // 比较键的函数 int (*keyCompare)(void *privdata, const void *key1, const void *key2); // 销毁键的函数 void (*keyDestructor)(void *privdata, void *key); // 销毁值的函数 void (*valDestructor)(void *privdata, void *obj); } dictType;
Redis字典除了主数据库的K-V数据存储以外,还可以用于:散列表对象、哨兵模式中的主从节点管理等在不同的应用中,字典的形态都可能不同,dictType是为了实现各种形态的字典而抽象出来的操作函数(多态)。
完整的Redis字典数据结构:
字典达到存储上限(阈值 0.75),需要rehash(扩容)
说明:
初次申请默认容量为4个dictEntry,非初次申请为当前hash表容量的一倍。rehashidx=0表示要进行rehash操作。新增加的数据在新的hash表h[1]修改、删除、查询在老hash表h[0]、新hash表h[1]中(rehash中)将老的hash表h[0]的数据重新计算索引值后全部迁移到新的hash表h[1]中,这个过程称为rehash。 渐进式rehash
当数据量巨大时rehash的过程是非常缓慢的,所以需要进行优化。
服务器忙,则只对一个节点进行rehash
服务器闲,可批量rehash(100节点)
应用场景:
1、主数据库的K-V数据存储
2、散列表对象(hash)
3、哨兵模式中的主从节点管理
压缩列表(ziplist)是由一系列特殊编码的连续内存块组成的顺序型数据结构
节省内存
是一个字节数组,可以包含多个节点(entry)。每个节点可以保存一个字节数组或一个整数。
压缩列表的数据结构如下:
zlbytes:压缩列表的字节长度
zltail:压缩列表尾元素相对于压缩列表起始地址的偏移量
zllen:压缩列表的元素个数
entry1…entryX : 压缩列表的各个节点
zlend:压缩列表的结尾,占一个字节,恒为0xFF(255)
entryX元素的编码结构:
previous_entry_length:前一个元素的字节长度
encoding:表示当前元素的编码
content:数据内容
ziplist结构体如下:
struct ziplist<T>{ unsigned int zlbytes; // ziplist的长度字节数,包含头部、所有entry和zipend。 unsigned int zloffset; // 从ziplist的头指针到指向最后一个entry的偏移量,用于快速反向查询 unsigned short int zllength; // entry元素个数T[] entry; // 元素值 unsigned char zlend; // ziplist结束符,值固定为0xFF } typedef struct zlentry { unsigned int prevrawlensize; //previous_entry_length字段的长度 unsigned int prevrawlen; //previous_entry_length字段存储的内容 unsigned int lensize; //encoding字段的长度 unsigned int len; //数据内容长度 unsigned int headersize; //当前元素的首部长度,即previous_entry_length字段长度与 encoding字段长度之和。 unsigned char encoding; //数据类型 unsigned char *p; //当前元素首地址 } zlentry;
应用场景:
sorted-set和hash元素个数少且是小整数或短字符串(直接使用)
list用快速链表(quicklist)数据结构存储,而快速链表是双向列表与压缩列表的组合。(间接使用)
整数集合(intset)是一个有序的(整数升序)、存储整数的连续存储结构。
当Redis集合类型的元素都是整数并且都处在64位有符号整数范围内(-2^63 ~ 2^63 -1 ),使用该结构体存储。
127.0.0.1:6379> SADD set:1 12 6 8 (integer) 3 127.0.0.1:6379> OBJECT encoding set:1 "intset" 127.0.0.1:6379> SADD set:2 1 1000000000000000000000000000000000000000000000000000000 99999999999999999999999999999 (integer) 3 127.0.0.1:6379> OBJECT encoding set:2 "hashtable"
intset的结构图如下:
typedef struct intset{ //编码方式 uint32_t encoding; //集合包含的元素数量 uint32_t length; //保存元素的数组 int8_t contents[]; }intset;
应用场景:
可以保存类型为int16_t、int32_t 或者int64_t 的整数值,并且保证集合中不会出现重复元素。
快速列表(重要)
快速列表(quicklist)是Redis底层重要的数据结构。是列表的底层实现。(在Redis3.2之前,Redis采用双向链表(adlist)和压缩列表(ziplist)实现。)在Redis3.2以后结合adlist和ziplist的优势Redis设计出了quicklist。
127.0.0.1:6379> LPUSH list:001 2 3 5 6 7 (integer) 5 127.0.0.1:6379> OBJECT encoding list:001 "quicklist"
双向列表(adlist)
双向链表优势:
双向:链表具有前置节点和后置节点的引用,获取这两个节点时间复杂度都为O(1)。
普通链表(单链表):节点类保留下一节点的引用。链表类只保留头节点的引用,只能从头节点插入删除
无环:表头节点的 prev 指针和表尾节点的 next 指针都指向 NULL,对链表的访问都是以 NULL 结束。
环状:头的前一个节点指向尾节点
带链表长度计数器:通过 len 属性获取链表长度的时间复杂度为 O(1)。
多态:链表节点使用 void* 指针来保存节点值,可以保存各种不同类型的值。
快速列表
quicklist是一个双向链表,链表中的每个节点时一个ziplist结构。quicklist中的每个节点ziplist都能够存储多个数据元素。
quicklist的结构定义如下:
#if UINTPTR_MAX == 0xffffffff /* 32-bit */ # define QL_FILL_BITS 14 # define QL_COMP_BITS 14 # define QL_BM_BITS 4 #elif UINTPTR_MAX == 0xffffffffffffffff /* 64-bit */ # define QL_FILL_BITS 16 # define QL_COMP_BITS 16 # define QL_BM_BITS 4 /* we can encode more, but we rather limit the user since they cause performance degradation. */ #else # error unknown arch bits count #endif /* quicklist is a 40 byte struct (on 64-bit systems) describing a quicklist. * 'count' is the number of total entries. * 'len' is the number of quicklist nodes. * 'compress' is: 0 if compression disabled, otherwise it's the number * of quicklistNodes to leave uncompressed at ends of quicklist. * 'fill' is the user-requested (or default) fill factor. * 'bookmakrs are an optional feature that is used by realloc this struct, * so that they don't consume memory when not used. */ typedef struct quicklist { quicklistNode *head; // 指向quicklist的头部 quicklistNode *tail; // 指向quicklist的尾部 unsigned long count; /* 列表中所有数据项的个数总和 */ unsigned long len; /* quicklist节点的个数,即ziplist的个数 */ int fill : QL_FILL_BITS; /* ziplist大小限定,由list-max-ziplist-size给定 (Redis设定)*/ unsigned int compress : QL_COMP_BITS; /* depth of end nodes not to compress;0=off */ unsigned int bookmark_count: QL_BM_BITS; /*节点压缩深度设置,由list-compress-depth给定*/ quicklistBookmark bookmarks[]; /*可选新特性 使用realloc重新分配空间的时候会用到*/ } quicklist;
quicklistNode的结构定义如下:
/* quicklistNode is a 32 byte struct describing a ziplist for a quicklist. * We use bit fields keep the quicklistNode at 32 bytes. * count: 16 bits, max 65536 (max zl bytes is 65k, so max count actually < 32k). * encoding: 2 bits, RAW=1, LZF=2. * container: 2 bits, NONE=1, ZIPLIST=2. * recompress: 1 bit, bool, true if node is temporary decompressed for usage. * attempted_compress: 1 bit, boolean, used for verifying during testing. * extra: 10 bits, free for future use; pads out the remainder of 32 bits */ typedef struct quicklistNode { struct quicklistNode *prev; // 指向上一个ziplist节点 struct quicklistNode *next; // 指向下一个ziplist节点 unsigned char *zl; // 数据指针,如果没有被压缩,就指向ziplist结构,反之指向 quicklistLZF结构 unsigned int sz; // 表示指向ziplist结构的总长度(内存占用长度) unsigned int count : 16; // 表示ziplist中的数据项个数 unsigned int encoding : 2; // 编码方式,1--ziplist,2--quicklistLZF unsigned int container : 2; // 预留字段,存放数据的方式,1--NONE,2--ziplist unsigned int recompress : 1; // 解压标记,当查看一个被压缩的数据时,需要暂时解压,标记此参数为 1,之后再重新进行压缩 unsigned int attempted_compress : 1; // 测试相关 unsigned int extra : 10; // 扩展字段,暂时没用 } quicklistNode;
数据压缩
quicklist每个节点的实际数据存储结构为ziplist,这种结构的优势在于节省存储空间。为了进一步降低ziplist的存储空间,还可以对ziplist进行压缩。Redis采用的压缩算法是LZF。其基本思想是:数据与前面重复的记录重复位置及长度,不重复的记录原始数据。
压缩过后的数据可以分成多个片段,每个片段有两个部分:解释字段和数据字段。quicklistLZF的结构体如下:
/* quicklistLZF is a 4+N byte struct holding 'sz' followed by 'compressed'. * 'sz' is byte length of 'compressed' field. * 'compressed' is LZF data with total (compressed) length 'sz' * NOTE: uncompressed length is stored in quicklistNode->sz. * When quicklistNode->zl is compressed, node->zl points to a quicklistLZF */ typedef struct quicklistLZF { unsigned int sz; /* LZF压缩后占用的字节数*/ char compressed[]; //柔性数组,指向数据部分 } quicklistLZF;
应用场景
列表(List)的底层实现、发布与订阅、慢查询、监视器等功能。
流对象
stream主要由:消息、生产者、消费者和消费组构成。
Redis Stream的底层主要使用了listpack(紧凑列表)和Rax树(基数树)。
listpack
listpack表示一个字符串列表的序列化,listpack可用于存储字符串或整数。用于存储stream的消息内容。
结构如下图:
Rax树
Rax 是一个有序字典树 (基数树 Radix Tree),按照 key 的字典序排列,支持快速地定位、插入和删除操作。
Rax 被用在 Redis Stream 结构里面用于存储消息队列,在 Stream 里面消息 ID 的前缀是时间戳 + 序号,这样的消息可以理解为时间序列消息。使用 Rax 结构 进行存储就可以快速地根据消息 ID 定位到具体的消息,然后继续遍历指定消息 之后的所有消息。
应用场景:
stream的底层实现
10种encoding
/* Objects encoding. Some kind of objects like Strings and Hashes can be * internally represented in multiple ways. The 'encoding' field of the object * is set to one of this fields for this object. */ #define OBJ_ENCODING_RAW 0 /* Raw representation */ #define OBJ_ENCODING_INT 1 /* Encoded as integer */ #define OBJ_ENCODING_HT 2 /* Encoded as hash table */ #define OBJ_ENCODING_ZIPMAP 3 /* Encoded as zipmap */ #define OBJ_ENCODING_LINKEDLIST 4 /* No longer used: old list encoding. */ #define OBJ_ENCODING_ZIPLIST 5 /* Encoded as ziplist */ #define OBJ_ENCODING_INTSET 6 /* Encoded as intset */ #define OBJ_ENCODING_SKIPLIST 7 /* Encoded as skiplist */ #define OBJ_ENCODING_EMBSTR 8 /* Embedded sds string encoding */ #define OBJ_ENCODING_QUICKLIST 9 /* Encoded as linked list of ziplists */ #define OBJ_ENCODING_STREAM 10 /* Encoded as a radix tree of listpacks */
encoding 表示对象的内部编码,占 4 位。
Redis通过 encoding 属性为对象设置不同的编码
对于少的和小的数据,Redis采用小的和压缩的存储方式,体现Redis的灵活性
大大提高了 Redis 的存储量和执行效率
比如Set对象:
intset : 元素是64位以内的整数
hashtable:元素是64位以外的整数
127.0.0.1:6379> sadd set:001 1 3 5 6 2 (integer) 5 127.0.0.1:6379> object encoding set:001 "intset" 127.0.0.1:6379> sadd set:004 1 100000000000000000000000000 9999999999 (integer) 3 127.0.0.1:6379> object encoding set:004 "hashtable"
String
int、raw、embstr
int
REDIS_ENCODING_INT(int类型的整数)
127.0.0.1:6379> set n1 123 OK 127.0.0.1:6379> object encoding n1 "int"
embstr
REDIS_ENCODING_EMBSTR(编码的简单动态字符串)
小字符串 长度小于44个字节
127.0.0.1:6379> set name:001 zhangfei OK 127.0.0.1:6379> object encoding name:001 "embstr"
raw
REDIS_ENCODING_RAW (简单动态字符串)
大字符串 长度大于44个字节
127.0.0.1:6379> set address:001 asdasdasdasdasdasdsadasdasdasdasdasdasdasdasdasdasdasdasdasdasdasdasdasdasdasdasdasdasdas OK 127.0.0.1:6379> object encoding address:001 "raw"
list
列表的编码是quicklist。
REDIS_ENCODING_QUICKLIST(快速列表)
127.0.0.1:6379> lpush list:001 1 2 5 4 3 (integer) 5 127.0.0.1:6379> object encoding list:001 "quicklist"
hash
散列的编码是字典和压缩列表
dict
REDIS_ENCODING_HT(字典)
当散列表元素的个数比较多或元素不是小整数或短字符串时。
127.0.0.1:6379> hmset user:003 username111111111111111111111111111111111111111111111111111111111111111111111111 11111111111111111111111111111111 zhangfei password 111 num 2300000000000000000000000000000000000000000000000000 OK 127.0.0.1:6379> object encoding user:003 "hashtable"
ziplist
REDIS_ENCODING_ZIPLIST(压缩列表)
当散列表元素的个数比较少,且元素都是小整数或短字符串时。
127.0.0.1:6379> HSET user:001 username zhanyun password 123456 (integer) 2 127.0.0.1:6379> OBJECT encoding user:001 "ziplist"
set
集合的编码是整形集合和字典
intset
REDIS_ENCODING_INTSET(整数集合)
当Redis集合类型的元素都是整数并且都处在64位有符号整数范围内(-9223372036854775808 ~ 9223372036854775807)
127.0.0.1:6379> sadd set:001 1 3 5 6 2 (integer) 5 127.0.0.1:6379> object encoding set:001 "intset"
dict
REDIS_ENCODING_HT(字典)
当Redis集合类型的元素是非整数或都处在64位有符号整数范围外(>9223372036854775807)
127.0.0.1:6379> sadd set:004 1 100000000000000000000000000 9999999999 (integer) 3 127.0.0.1:6379> object encoding set:004 "hashtable"
zset
有序集合的编码是压缩列表和跳跃表+字典
ziplist
REDIS_ENCODING_ZIPLIST(压缩列表)
当元素的个数比较少,且元素都是小整数或短字符串时。
127.0.0.1:6379> zadd hit:1 100 item1 20 item2 45 item3 (integer) 3 127.0.0.1:6379> object encoding hit:1 "ziplist"
skiplist + dict
REDIS_ENCODING_SKIPLIST(跳跃表+字典)
当元素的个数比较多或元素不是小整数或短字符串时。
127.0.0.1:6379> zadd hit:2 100 item1111111111111111111111111111111111111111111111111111111111111111111111111111 1111111111111111111111111111111111 20 item2 45 item3 (integer) 3 127.0.0.1:6379> object encoding hit:2 "skiplist"
感谢各位的阅读,以上就是“Redis底层数据结构的详细介绍”的内容了,经过本文的学习后,相信大家对Redis底层数据结构的详细介绍这一问题有了更深刻的体会,具体使用情况还需要大家实践验证。这里是亿速云,小编将为大家推送更多相关知识点的文章,欢迎关注!
免责声明:本站发布的内容(图片、视频和文字)以原创、转载和分享为主,文章观点不代表本网站立场,如果涉及侵权请联系站长邮箱:is@yisu.com进行举报,并提供相关证据,一经查实,将立刻删除涉嫌侵权内容。