温馨提示×

温馨提示×

您好,登录后才能下订单哦!

密码登录×
登录注册×
其他方式登录
点击 登录注册 即表示同意《亿速云用户服务条款》

python进行相关性分析并绘制散点的示例分析

发布时间:2021-09-18 09:05:46 来源:亿速云 阅读:408 作者:小新 栏目:开发技术

这篇文章将为大家详细讲解有关python进行相关性分析并绘制散点的示例分析,小编觉得挺实用的,因此分享给大家做个参考,希望大家阅读完这篇文章后可以有所收获。

 需要用到的库

主要用到的库是pandas、numpy、matplotlib、seaborn等,想要使用seaborn库必须要引入matplotlib库,seaborn是作为它的外挂库。

#1 load pakeage
 
import pandas as pd#读写表格以及表格处理
import numpy as np#用于数据计算
 
import geopandas as gpd
import matplotlib.pyplot as plt
import seaborn as sns
import os
import warnings
warnings.filterwarnings("ignore")
plt.rc('font',family='Times New Roman')
from glob import glob
from osgeo import gdal,gdal_array,gdalnumeric
plt.rcParams['font.sans-serif']=['Simhei']  #显示中文
plt.rcParams['axes.unicode_minus']=False    #显示负号

数据读取

这里我使用的是师弟的一部分数据,在这里进行数据读取。

df = pd.read_csv('./JXDY_1.csv',encoding='utf-8')
df.head()

python进行相关性分析并绘制散点的示例分析

这里我们做相关性分析

df.corr()#默认是pearson相关性分析

python进行相关性分析并绘制散点的示例分析

之后我们进行批量化的散点图输出,将相关性数据放在图形上

a = 2#这里的相关性是从第二位开始进行计算的,所以我从第二位开始提取
for i in df.columns[3:]:
    a1 = sns.lmplot(y='fruit',x=i,data=df)
    ax = plt.gca()
    ax.text(0.9,1,"Pearson:{:.2f}".format(df.corr().iloc[1,a]),transform=ax.transAxes)#添加相关性
    a = a+1
    plt.savefig('./{}.jpg'.format(i),dpi=300,bbox_inches = 'tight')

 python进行相关性分析并绘制散点的示例分析

 结果就大功告成了,之后吧结果输出来就可以了!

关于“python进行相关性分析并绘制散点的示例分析”这篇文章就分享到这里了,希望以上内容可以对大家有一定的帮助,使各位可以学到更多知识,如果觉得文章不错,请把它分享出去让更多的人看到。

向AI问一下细节

免责声明:本站发布的内容(图片、视频和文字)以原创、转载和分享为主,文章观点不代表本网站立场,如果涉及侵权请联系站长邮箱:is@yisu.com进行举报,并提供相关证据,一经查实,将立刻删除涉嫌侵权内容。

AI