这篇文章主要介绍“Java List的remove()方法陷阱以及性能优化的方法教程”,在日常操作中,相信很多人在Java List的remove()方法陷阱以及性能优化的方法教程问题上存在疑惑,小编查阅了各式资料,整理出简单好用的操作方法,希望对大家解答”Java List的remove()方法陷阱以及性能优化的方法教程”的疑惑有所帮助!接下来,请跟着小编一起来学习吧!
Java List在进行remove()方法是通常容易踩坑,主要有一下几点
循环时:问题在于,删除某个元素后,因为删除元素后,后面的元素都往前移动了一位,而你的索引+1,所以实际访问的元素相对于删除的元素中间间隔了一位。
//错误的方法 for(int i=0;i<list.size();i++) { if(list.get(i)%2==0) { list.remove(i); } }
for(Integer i:list) { if(i%2==0) { list.remove(i); } }
抛出异常:java.util.ConcurrentModificationException;
foreach的本质是使用迭代器实现,每次进入for (Integer i:list) 时,会调用ListItr.next()方法;
继而调用checkForComodification()方法, checkForComodification()方法对操作集合的次数进行了判断,如果当前对集合的操作次数与生成迭代器时不同,抛出异常
public E next() { checkForComodification(); if (!hasNext()) { throw new NoSuchElementException(); } lastReturned = next; next = next.next; nextIndex++; return lastReturned.item; } // checkForComodification()方法对集合遍历前被修改的次数与现在被修改的次数做出对比 final void checkForComodification() { if (modCount != expectedModCount) { throw new ConcurrentModificationException(); } }
使用for循环,并且同时改变索引;(正确)
//正确 for(int i=0;i<list.size();i++) { if(list.get(i)%2==0) { list.remove(i); i--;//在元素被移除掉后,进行索引后移 } }
使用for循环,倒序进行;(正确)
//正确 for(int i=list.size()-1;i>=0;i--) { if(list.get(i)%2==0) { list.remove(i); } }
使用while循环,删除了元素,索引便不+1,在没删除元素时索引+1(正确)
//正确 int i=0; while(i<list.size()) { if(list.get(i)%2==0) { list.remove(i); }else { i++; } }
只能使用迭代器的remove()方法,使用列表的remove()方法是错误的
//正确,并且推荐的方法 Iterator<Integer> itr = list.iterator(); while(itr.hasNext()) { if(itr.next()%2 ==0) itr.remove(); }
下面来谈谈当数据量过大时候,需要删除的元素较多时,如何用迭代器进行性能的优化,对于ArrayList这几乎是致命的,从一个ArrayList中删除批量元素都是昂贵的时间复杂度为O(n²),那么接下来看看LinkeedList是否可行。LinkedList暴露了两个问题,一个:是每次的Get请求效率不高,而且,对于remove的调用同样低效,因为达到位置I的代价是昂贵的。
是每次的Get请求效率不高
需要先get元素,然后过滤元素。比较元素是否满足删除条件。
remove的调用同样低效
LinkedList的remove(index),方法是需要先遍历链表,先找到该index下的节点,再处理节点的前驱后继。
以上两个问题当遇到批量级别需要处理时时间复杂度直接上升到O(n²)
对于LinkedList,对该迭代器的remove()方法的调用只花费常数时间,因为在循环时该迭代器位于需要被删除的节点,因此是常数操作。对于一个ArrayList,即使该迭代器位于需要被删除的节点,其remove()方法依然是昂贵的,因为数组项必须移动。下面贴出示例代码以及运行结果
public class RemoveByIterator { public static void main(String[] args) { List<Integer> arrList1 = new ArrayList<>(); for(int i=0;i<100000;i++) { arrList1.add(i); } List<Integer> linList1 = new LinkedList<>(); for(int i=0;i<100000;i++) { linList1.add(i); } List<Integer> arrList2 = new ArrayList<>(); for(int i=0;i<100000;i++) { arrList2.add(i); } List<Integer> linList2 = new LinkedList<>(); for(int i=0;i<100000;i++) { linList2.add(i); } removeEvens(arrList1,"ArrayList"); removeEvens(linList1,"LinkedList"); removeEvensByIterator(arrList2,"ArrayList"); removeEvensByIterator(linList2,"LinkedList"); } public static void removeEvensByIterator(List<Integer> lst ,String name) {//利用迭代器remove偶数 long sTime = new Date().getTime(); Iterator<Integer> itr = lst.iterator(); while(itr.hasNext()) { if(itr.next()%2 ==0) itr.remove(); } System.out.println(name+"使用迭代器时间:"+(new Date().getTime()-sTime)+"毫秒"); } public static void removeEvens(List<Integer> list , String name) {//不使用迭代器remove偶数 long sTime = new Date().getTime(); int i=0; while(i<list.size()) { if(list.get(i)%2==0) { list.remove(i); }else { i++; } } System.out.println(name+"不使用迭代器的时间"+(new Date().getTime()-sTime)+"毫秒"); } }
原理 重点看一下LinkedList的迭代器
另一篇博客Iterator简介 LinkedList使用迭代器优化移除批量元素原理
调用方法:list.iterator();
重点看下remove方法
private class ListItr implements ListIterator<E> { //返回的节点 private Node<E> lastReturned; //下一个节点 private Node<E> next; //下一个节点索引 private int nextIndex; //修改次数 private int expectedModCount = modCount; ListItr(int index) { //根据传进来的数字设置next等属性,默认传0 next = (index == size) ? null : node(index); nextIndex = index; } //直接调用节点的后继指针 public E next() { checkForComodification(); if (!hasNext()) throw new NoSuchElementException(); lastReturned = next; next = next.next; nextIndex++; return lastReturned.item; } //返回节点的前驱 public E previous() { checkForComodification(); if (!hasPrevious()) throw new NoSuchElementException(); lastReturned = next = (next == null) ? last : next.prev; nextIndex--; return lastReturned.item; } /** * 最重要的方法,在LinkedList中按一定规则移除大量元素时用这个方法 * 为什么会比list.remove效率高呢; */ public void remove() { checkForComodification(); if (lastReturned == null) throw new IllegalStateException(); Node<E> lastNext = lastReturned.next; unlink(lastReturned); if (next == lastReturned) next = lastNext; else nextIndex--; lastReturned = null; expectedModCount++; } public void set(E e) { if (lastReturned == null) throw new IllegalStateException(); checkForComodification(); lastReturned.item = e; } public void add(E e) { checkForComodification(); lastReturned = null; if (next == null) linkLast(e); else linkBefore(e, next); nextIndex++; expectedModCount++; } }
LinkedList 源码的remove(int index)的过程是
先逐一移动指针,再找到要移除的Node,最后再修改这个Node前驱后继等移除Node。如果有批量元素要按规则移除的话这么做时间复杂度O(n²)。但是使用迭代器是O(n)。
LinkedList是双向链表,这里示意图简单画个单链表
比如要移除链表中偶数元素,先循环调用get方法,指针逐渐后移获得元素,比如获得index = 1;指针后移两次才能获得元素。
当发现元素值为偶数是。使用idnex移除元素,如list.remove(1);链表先Node node(int index)返回该index下的元素,与get方法一样。然后再做前驱后继的修改。所以在remove之前相当于做了两次get请求。导致时间复杂度是O(n)。
继续移除下一个元素需要重新再走一遍链表(步骤忽略当index大于半数,链表倒序查找)
以上如果移除偶数指针做了6次移动。
删除2节点
get请求移动1次,remove(1)移动1次。
删除4节点
get请求移动2次,remove(2)移动2次。
迭代器的next指针执行一次一直向后移动的操作。一共只需要移动4次。当元素越多时这个差距会越明显。整体上移除批量元素是O(n),而使用list.remove(index)移除批量元素是O(n²)
到此,关于“Java List的remove()方法陷阱以及性能优化的方法教程”的学习就结束了,希望能够解决大家的疑惑。理论与实践的搭配能更好的帮助大家学习,快去试试吧!若想继续学习更多相关知识,请继续关注亿速云网站,小编会继续努力为大家带来更多实用的文章!
免责声明:本站发布的内容(图片、视频和文字)以原创、转载和分享为主,文章观点不代表本网站立场,如果涉及侵权请联系站长邮箱:is@yisu.com进行举报,并提供相关证据,一经查实,将立刻删除涉嫌侵权内容。