温馨提示×

温馨提示×

您好,登录后才能下订单哦!

密码登录×
登录注册×
其他方式登录
点击 登录注册 即表示同意《亿速云用户服务条款》

怎么理解并掌握Python线程

发布时间:2021-11-09 09:02:11 来源:亿速云 阅读:128 作者:iii 栏目:开发技术

这篇文章主要讲解了“怎么理解并掌握Python线程”,文中的讲解内容简单清晰,易于学习与理解,下面请大家跟着小编的思路慢慢深入,一起来研究和学习“怎么理解并掌握Python线程”吧!

1.自定义进程

自定义进程类,继承Process类,重写run方法(重写Process的run方法)。

from multiprocessing import Process
import time
import os
class MyProcess(Process):
    def __init__(self, name):  ##重写,需要__init__,也添加了新的参数。        ##Process.__init__(self) 不可以省略,否则报错:AttributeError:'XXXX'object has no attribute '_colsed'
        Process.__init__(self)
        self.name = name
    def run(self):
        print("子进程(%s-%s)启动" % (self.name, os.getpid()))
        time.sleep(3)
        print("子进程(%s-%s)结束" % (self.name, os.getpid()))
if __name__ == '__main__':
    print("父进程启动")
    p = MyProcess("Ail")
    # 自动调用MyProcess的run()方法
    p.start()
    p.join()
    print("父进程结束")

# 输出结果
父进程启动
子进程(Ail-38512)启动
子进程(Ail-38512)结束
父进程结束

2.进程与线程

多进程适合在CPU密集型操作(CPU操作指令比较多,如科学计算、位数多的浮点计算);

多线程适合在IO密集型操作(读写数据操作比较多的,比如爬虫、文件上传、下载)

线程是并发,进程是并行:进程之间互相独立,是系统分配资源的最小单位,同一个进程中的所有线程共享资源。

进程:一个运行的程序或代码就是一个进程,一个没有运行的代码叫程序。进程是系统进行资源分配的最小单位,进程拥有自己的内存空间,所以,进程间数据不共享,开销大。

进程是程序的一次动态执行过程。每个进程都拥有自己的地址空间、内存、数据栈以及其它用于跟踪执行的辅助数据。操作系统负责其上所有进程的执行,操作系统会为这些进程合理地分配执行时间。

线程:调度执行的最小单位,也叫执行路径,不能独立存在,依赖进程的存在而存在,一个进程至少有一个线程,叫做主线程,多个线程共享内存(数据共享和全局变量),因此提升程序的运行效率。

线程是操作系统能够进行运算调度的最小单位,它被包含在进程之中,是进程中的实际运作单位。一条线程指的是进程中一个单一顺序的控制流,一个进程中可以并发多个线程,每条线程并行执行不同的任务。一个线程是一个execution context(执行上下文),即一个CPU执行时所需要的一串指令。

主线程:主线程就是创建线程进程中产生的第一个线程,也就是main函数对应的线程。

协程:用户态的轻量级线程,调度由用户控制,拥有自己的寄存器上下文和栈,切换基本没有内核切换的开销,切换灵活。

进程和线程的关系

怎么理解并掌握Python线程

3.多线程

操作系统通过给不同的线程分配时间片(CPU运行时长)来调度线程,当CPU执行完一个线程的时间片后就会快速切换到下一个线程,时间片很短而且切换速度很快,以至于用户根本察觉不到。多个线程根据分配的时间片轮流被CPU执行,如今绝大多数计算机的CPU都是多核的,多个线程在操作系统的调度下,能够被多个CPU并行执行,程序的执行速度和CPU的利用效率大大提升。绝大对数主流的编程语言都能很好地支持多线程,然而,Python由于GIL锁无法实现真正的多线程。

内存中的线程

怎么理解并掌握Python线程

4.Thread类方法

(1)start() --开始执行该线程;

(2)run() --定义线程的方法(开发者可以在子类中重写);标准的 run() 方法会对作为 target 参数传递给该对象构造器的可调用对象(如果存在)发起调用,并附带从 args 和 kwargs 参数分别获取的位置和关键字参数。

(3)join(timeout=None) --直至启动的线程终止之前一直挂起;除非给出了timeout(单位秒),否则一直被阻塞;因为 join() 总是返回 None ,所以要在 join() 后调用 is_alive() 才能判断是否发生超时 -- 如果线程仍然存活,则 join() 超时。一个线程可以被 join() 很多次。如果尝试加入当前线程会导致死锁, join() 会引起 RuntimeError 异常。如果尝试 join() 一个尚未开始的线程,也会抛出相同的异常。

(4)is_alive() --布尔值,表示这个线程是否还存活;当 run() 方法刚开始直到 run() 方法刚结束,这个方法返回 True 。

(5)threading.current_thread()--返回当前对应调用者的控制线程的 Thread 对象。例如,获取当前线程的名字,可以是current_thread().name

5.多线程与多进程小Case

from threading import Thread
from multiprocessing import Process
import os
def work():
    print('hello,',os.getpid())
if __name__ == '__main__':
    # 在主进程下开启多个线程,每个线程都跟主进程的pid一样
    t1 = Thread(target=work)  # 开启一个线程
    t2 = Thread(target=work)  # 开启两个线程
    t1.start()  ##start()--It must be called at most once per thread object.It arranges for the object's run() method to be                ## invoked in a separate thread of control.This method will raise a RuntimeError if called more than once on the                ## same thread object.
    t2.start()
    print('主线程/主进程pid', os.getpid())
    # 开多个进程,每个进程都有不同的pid
    p1 = Process(target=work)
    p2 = Process(target=work)
    p1.start()
    p2.start()
    print('主线程/主进程pid',os.getpid())

6.Thread 的生命周期

线程的状态包括:创建、就绪、运行、阻塞、结束。

(1)创建对象时,代表 Thread 内部被初始化;

(2) 调用 start() 方法后,thread 会开始进入队列准备运行,在未获得CPU、内存资源前,称为就绪状态;轮询获取资源,进入运行状态;如果遇到sleep,则是进入阻塞状态;

(3) thread 代码正常运行结束或者是遇到异常,线程会终止。

7.自定义线程

(1)定义一个类,继承Thread;

(2)重写__init__ 和 run();

(3)创建线程类对象;

(4)启动线程。

import time
import threading
class MyThread(threading.Thread):
    def __init__(self,num):
        super().__init__() ###或者是Thread.__init__()
        self.num = num
    def run(self):
        print('线程名称:', threading.current_thread().getName(), '参数:', self.num, '开始时间:', time.strftime('%Y-%m-%d %H:%M:%S'))
if __name__ == '__main__':
    print('主线程开始:',time.strftime('%Y-%m-%d %H:%M:%S'))
    t1 = MyThread(1)
    t2 = MyThread(2)
    t1.start()
    t2.start()
    t1.join()
    t2.join()
    print('主线程结束:', time.strftime('%Y-%m-%d %H:%M:%S'))

8.线程共享数据与GIL(全局解释器锁)

如果是全局变量,则每个线程是共享的;

GIL锁:可以用篮球比赛的场景来模拟,把篮球场看作是CPU,一场篮球比赛看作是一个线程,如果只有一个篮球场,多场比赛就要排队进行,类似于一个简单的单核多线程的程序;如果由多块篮球场,多场比赛同时进行,就是一个简单的多核多线程的程序。然而,Python有着特别的规定:每场比赛必须要在裁判的监督之下才允许进行,而裁判只有一个。这样不管你有几块篮球场,同一时间只允许有一个场地进行比赛,其它场地都将被闲置,其它比赛都只能等待。

9.GIL 和 Lock

GIL保证同一时间内一个进程可以有多个线程,但只有一个线程在执行;锁的目的是为了保护共享的数据,同一时间只能有一个线程来修改共享的数据。

类为threading.Lock

它有两个基本方法, acquire() 和 release() 。

当状态为非锁定时, acquire() 将状态改为 锁定 并立即返回。当状态是锁定时, acquire() 将阻塞至其他线程调用 release() 将其改为非锁定状态,然后 acquire() 调用重置其为锁定状态并返回。

release() 只在锁定状态下调用; 它将状态改为非锁定并立即返回。如果尝试释放一个非锁定的锁,则会引发 RuntimeError 异常。

Caese 如下:

from threading import Thread
from threading import Lock
import time
number = 0
def task(lock):
    global number
    lock.acquire() ##持有锁
    for i in range(100000)      number += 1
    lock.release() ##释放锁
if __name__ == '__main__':
    lock=Lock()
    t1 = Thread(target=task,args=(lock,))
    t2 = Thread(target=task,args=(lock,))    t3 = Thread(target=task,args=(lock,))
    t1.start()    t2.start()    t3.start()    t1.join()    t2.join()    t3.join()        print('number:',number)

10.线程的信号量

class threading.Semaphore([values])

values是一个内部计数,values默认是1,如果小于0,则会抛出 ValueError 异常,可以用于控制线程数并发数。

信号量的实现方式:

s=Semaphore(?)

在内部有一个counter计数器,counter的值就是同一时间可以开启线程的个数。每当我们s.acquire()一次,计数器就进行减1处理,每当我们s.release()一次,计数器就会进行加1处理,当计数器为0的时候,其它的线程就处于等待的状态。

程序添加一个计数器功能(信号量),限制一个时间点内的线程数量,防止程序崩溃或其它异常。

Case

import time
import threading
s=threading.Semaphore(5)    #添加一个计数器
def task():
    s.acquire()    #计数器获得锁
    time.sleep(2)    #程序休眠2秒
    print("The task run at ",time.ctime())
    s.release()    #计数器释放锁

for i in range(40):
    t1=threading.Thread(target=task,args=())    #创建线程
    t1.start()    #启动线程

也可以使用with操作,替代acquire ()和release(),上面的代码调整如下:

import time
import threading
s=threading.Semaphore(5)    #添加一个计数器
def task():    with s:   ## 类似打开文件的with操作
    ##s.acquire()    #计数器获得锁
      time.sleep(2)    #程序休眠2秒
      print("The task run at ",time.ctime())
    ##s.release()    #计数器释放锁

for i in range(40):
    t1=threading.Thread(target=task,args=())    #创建线程
    t1.start()    #启动线程

建议使用with。

感谢各位的阅读,以上就是“怎么理解并掌握Python线程”的内容了,经过本文的学习后,相信大家对怎么理解并掌握Python线程这一问题有了更深刻的体会,具体使用情况还需要大家实践验证。这里是亿速云,小编将为大家推送更多相关知识点的文章,欢迎关注!

向AI问一下细节

免责声明:本站发布的内容(图片、视频和文字)以原创、转载和分享为主,文章观点不代表本网站立场,如果涉及侵权请联系站长邮箱:is@yisu.com进行举报,并提供相关证据,一经查实,将立刻删除涉嫌侵权内容。

AI