温馨提示×

温馨提示×

您好,登录后才能下订单哦!

密码登录×
登录注册×
其他方式登录
点击 登录注册 即表示同意《亿速云用户服务条款》

nginx内存池源码分析

发布时间:2021-11-19 12:51:23 来源:亿速云 阅读:142 作者:iii 栏目:开发技术

本篇内容主要讲解“nginx内存池源码分析”,感兴趣的朋友不妨来看看。本文介绍的方法操作简单快捷,实用性强。下面就让小编来带大家学习“nginx内存池源码分析”吧!

内存池概述

    内存池是在真正使用内存之前,预先申请分配一定数量的、大小相等(一般情况下)的内存块留作备用。当有新的内存需求时,就从内存池中分出一部分内存块,若内存块不够用时,再继续申请新的内存。

   内存池的好处有减少向系统申请和释放内存的时间开销,解决内存频繁分配产生的碎片,提示程序性能,减少程序员在编写代码中对内存的关注等

   目前一些常见的内存池实现方案有STL中的内存分配区,boost中的object_pool,nginx中的ngx_pool_t,google的开源项目TCMalloc等。

一、nginx数据结构

// SGI STL小块和大块内存的分界点:128B
// nginx(给HTTP服务器所有的模块分配内存)小块和大块内存的分界点:4096B
#define NGX_MAX_ALLOC_FROM_POOL  (ngx_pagesize - 1) 

// 内存池默认大小
#define NGX_DEFAULT_POOL_SIZE    (16 * 1024)

// 内存池字节对齐,SGI STL对其是8B
#define NGX_POOL_ALIGNMENT       16
#define NGX_MIN_POOL_SIZE        ngx_align((sizeof(ngx_pool_t) + 2 * sizeof(ngx_pool_large_t)), \
		                         NGX_POOL_ALIGNMENT)

// 将开辟的内存调整到16的整数倍
#define ngx_align(d, a)          (((d) + (a - 1)) & ~(a - 1))
typedef struct ngx_pool_s ngx_pool_t;

typedef struct {
    u_char               *last;   // 指向可用内存的起始地址
    u_char               *end;    // 指向可用内存的末尾地址
    ngx_pool_t           *next;   // 指向下一个内存块  
    ngx_uint_t            failed; // 当前内存块分配空间失败的次数
} ngx_pool_data_t;

// 内存池块的类型
struct ngx_pool_s {
    ngx_pool_data_t       d;          // 内存池块头信息
    size_t                max;	
    ngx_pool_t           *current;    // 指向可用于分配空间的内存块(failed < 4)的起始地址
    ngx_chain_t          *chain;      // 连接所有的内存池块
    ngx_pool_large_t     *large;	  // 大块内存的入口指针
    ngx_pool_cleanup_t   *cleanup;    // 内存池块的清理操作,用户可设置回调函数,在内存池块释放之前执行清理操作
    ngx_log_t            *log;        // 日志
};

nginx内存池源码分析

二、nginx向OS申请空间ngx_create_pool

// 根据size进行内存开辟
ngx_pool_t * ngx_create_pool(size_t size, ngx_log_t *log){
    ngx_pool_t  *p;
	// 根据系统平台定义的宏以及用户执行的size,调用不同平台的API开辟内存池
    p = ngx_memalign(NGX_POOL_ALIGNMENT, size, log);
    if (p == NULL) {
        return NULL;
    }

    p->d.last = (u_char *) p + sizeof(ngx_pool_t);  // 指向可用内存的起始地址
    p->d.end = (u_char *) p + size;                 // 指向可用内存的末尾地址
    p->d.next = NULL;                               // 指向下一个内存块,当前刚申请内存块,所以置空              
    p->d.failed = 0;                                // 内存块是否开辟成功

    size = size - sizeof(ngx_pool_t);              // 能使用的空间 = 总空间 - 头信息
    // 指定的大小若大于一个页面就用一个页面,否则用指定的大小
    // max = min(size, 4096),max指的是除开头信息以外的内存块的大小
    p->max = (size < NGX_MAX_ALLOC_FROM_POOL) ? size : NGX_MAX_ALLOC_FROM_POOL;

    p->current = p;         // 指向可用于分配空间的内存块的起始地址
    p->chain = NULL;
    p->large = NULL;        // 小块内存直接在内存块开辟,大块内存在large指向的内存开辟
    p->cleanup = NULL;
    p->log = log;

    return p;
}

nginx内存池源码分析

三、nginx向内存池申请空间

void *
ngx_palloc(ngx_pool_t *pool, size_t size)
{
#if !(NGX_DEBUG_PALLOC)
    if (size <= pool->max) {
    	// 当前分配的空间小于max,小块内存的分配
        return ngx_palloc_small(pool, size, 1);   // 考虑内存对齐
    }
#endif

    return ngx_palloc_large(pool, size);
}

void *
ngx_pnalloc(ngx_pool_t *pool, size_t size)
{
#if !(NGX_DEBUG_PALLOC)
    if (size <= pool->max) {
        return ngx_palloc_small(pool, size, 0);  // 不考虑内存对齐
    }
#endif

    return ngx_palloc_large(pool, size);
}

void* ngx_pcalloc(ngx_pool_t *pool, size_t size){
    void *p;
    p = ngx_palloc(pool, size); // 考虑内存对齐
    if (p) {
        ngx_memzero(p, size);   // 可以初始化内存为0
    }

    return p;
}

ngx_palloc_small 分配效率高,只做了指针的偏移

static ngx_inline void *
ngx_palloc_small(ngx_pool_t *pool, size_t size, ngx_uint_t align)
{
    u_char      *m;
    ngx_pool_t  *p;
	// 从第一个内存块的current指针指向的内存池进行分配
    p = pool->current;

    do {
        m = p->d.last;  // m指向可分配内存的起始地址

        if (align) {
        	// 把m调整为NGX_ALIGNMENT整数倍
            m = ngx_align_ptr(m, NGX_ALIGNMENT);
        }
		// 内存池分配内存的核心代码
        if ((size_t) (p->d.end - m) >= size) {
        	// 若可分配空间 >= 申请的空间
        	// 偏移d.last指针,记录空闲空间的首地址
            p->d.last = m + size;
            return m;
        }
        // 当前内存块的空闲空间不够分配,若有下一个内存块则转向下一个内存块
        // 若没有,p会被置空,退出while
        p = p->d.next;
    } while (p);
	
    return ngx_palloc_block(pool, size);
}

当前内存池的块足够分配:

nginx内存池源码分析

当前内存池的块不够分配:

  1. 开辟新的内存块,修改新内存块头信息的last、end、next、failed

  2. 前面所有内存块的failed++

  3. 连接新的内存块以及前面的内存块

static void * ngx_palloc_block(ngx_pool_t *pool, size_t size){
    u_char      *m;
    size_t       psize;
    ngx_pool_t  *p, *new;
	// 开辟与上一个内存块大小相同的内存块
    psize = (size_t) (pool->d.end - (u_char *) pool);
	
	// 将psize对齐为NGX_POOL_ALIGNMENT的整数倍后,向OS申请空间
    m = ngx_memalign(NGX_POOL_ALIGNMENT, psize, pool->log);
    if (m == NULL) {
        return NULL;
    }

    new = (ngx_pool_t *) m;    // 指向新开辟内存块的起始地址

    new->d.end = m + psize;    // 指向新开辟内存块的末尾地址
    new->d.next = NULL;		   // 下一块内存的地址为NULL 
    new->d.failed = 0;		   // 当前内存块分配空间失败的次数
    
	// 指向头信息的尾部,而max,current、chain等只在第一个内存块有
    m += sizeof(ngx_pool_data_t);  
    m = ngx_align_ptr(m, NGX_ALIGNMENT);
    new->d.last = m + size;                // last指向当前块空闲空间的起始地址
	
	// 由于每次都是从pool->current开始分配空间
	// 若执行到这里,除了new这个内存块分配成功,其他的内存块全部分配失败
    for (p = pool->current; p->d.next != NULL; p = p->d.next) {
    	// 对所有的内存块的failed都++,直到该内存块分配失败的次数大于4了
    	// 就表示该内存块的剩余空间很小了,不能再分配空间了
    	// 就修改current指针,下次从current开始分配空间,再次分配的时候可以不用遍历前面的内存块
        if (p->d.failed++ > 4) {
            pool->current = p->d.next;
        }
    }
	
    p->d.next = new;   // 连接可分配空间的首个内存块 和 新开辟的内存块

    return m;
}

nginx内存池源码分析

四、大块内存的分配与释放

typedef struct ngx_pool_large_s  ngx_pool_large_t;

struct ngx_pool_large_s {
    ngx_pool_large_t     *next;   // 下一个大块内存的起始地址
    void                 *alloc;  // 大块内存的起始地址
};

static void * ngx_palloc_large(ngx_pool_t *pool, size_t size){
    void              *p;
    ngx_uint_t         n;
    ngx_pool_large_t  *large;
	
	// 调用的就是malloc
    p = ngx_alloc(size, pool->log);
    if (p == NULL) {
        return NULL;
    }

    n = 0;
	// for循环遍历存储大块内存信息的链表
    for (large = pool->large; large; large = large->next) {
        if (large->alloc == NULL) {
        	// 当大块内存被ngx_pfree时,alloc为NULL
        	// 遍历链表,若大块内存的首地址为空,则把当前malloc的内存地址写入alloc
            large->alloc = p;
            return p;
        }
		// 遍历4次后,若还没有找到被释放过的大块内存对应的信息
		// 为了提高效率,直接在小块内存中申请空间保存大块内存的信息
        if (n++ > 3) {
            break;
        }
    }
	// 通过指针偏移在小块内存池上分配存放大块内存*next和*alloc的空间
    large = ngx_palloc_small(pool, sizeof(ngx_pool_large_t), 1);
    if (large == NULL) {
    	// 如果在小块内存上分配存储*next和*alloc空间失败,则无法记录大块内存
    	// 释放大块内存p
        ngx_free(p);
        return NULL;
    }
	
    large->alloc = p;			   // alloc指向大块内存的首地址
    large->next = pool->large;	   // 这两句采用头插法,将新内存块的记录信息存放于以large为头结点的链表中
    pool->large = large;

    return p;
}

nginx内存池源码分析

大块内存的释放

// 释放p指向的大块内存
ngx_int_t ngx_pfree(ngx_pool_t *pool, void *p){
    ngx_pool_large_t  *l;

    for (l = pool->large; l; l = l->next) {
    	// 遍历存储大块内存信息的链表,找到p对应的大块内存
        if (p == l->alloc) {
            ngx_log_debug1(NGX_LOG_DEBUG_ALLOC, pool->log, 0,
                           "free: %p", l->alloc);
            // 释放大块内存,但不释放存储信息的内存空间
            ngx_free(l->alloc);  // free
            l->alloc = NULL;     // alloc置空

            return NGX_OK;
        }
    }

    return NGX_DECLINED;
}

五、关于小块内存不释放

就用了last和end两个指着标识空闲的空间,是无法将已经使用的空间合理归还到内存池的,只是会重置内存池。同时还存储了指向大内存块large和清理函数cleanup的头信息

考虑到nginx的效率,小块内存分配高效,同时也不回收内存

void ngx_reset_pool(ngx_pool_t *pool){
    ngx_pool_t        *p;
    ngx_pool_large_t  *l;
	
	// 由于需要重置小块内存,而大块内存的控制信息在小块内存中保存
	// 所以需要先释放大块内存,在重置小块内存
    for (l = pool->large; l; l = l->next) {
        if (l->alloc) {
            ngx_free(l->alloc);
        }
    }
	
	// 遍历小块内存的链表,重置last、failed、current、chain、large等管理信息
    for (p = pool; p; p = p->d.next) {
    	// 由于只有第一个内存块有除了ngx_pool_data_t以外的管理信息,别的内存块只有ngx_pool_data_t的信息
    	// 不会出错,但是会浪费空间
        p->d.last = (u_char *) p + sizeof(ngx_pool_t);
        p->d.failed = 0;
    }
	
	// current指向可用于分配内存的内存块
    pool->current = pool;
    pool->chain = NULL;
    pool->large = NULL;
}

nginx本质是http服务器,通常处理的是短链接,间接性提供服务,需要的内存不大,所以不回收内存,重置即可。

客户端发起一个requests请求后,nginx服务器收到请求会返回response响应,若在keep-alive时间内没有收到客户的再次请求,nginx服务器会主动断开连接,此时会reset内存池。下一次客户端请求再到来时,可以复用内存池。

如果是处理长链接,只要客户端还在线,服务器的资源就无法释放,直到系统资源耗尽。长链接一般使用SGI STL内存池的方式进行内存的开辟和释放,而这种方式分配和回收空间的效率就比nginx低

六、销毁和清空内存池

假设如下情况:

// 假设内存对齐为4B
typedef struct{
	char* p;
	char data[508];
}stData;

ngx_pool_t *pool = ngx_create_pool(512, log);  // 创建一个总空间为512B的nginx内存块
stData* data_ptr = ngx_alloc(512);            // 因为可用的实际内存大小为:512-sizeof(ngx_pool_t),所以属于大内存开辟
data_ptr->p = malloc(10);                   // p指向外界堆内存,类似于C++对象中对用占用了外部资源

当回收大块内存的时候,调用ngx_free,就会导致内存泄漏

nginx内存池源码分析

以上内存泄漏的问题,可以通过回调函数进行内存释放(通过函数指针实现)

typedef void (*ngx_pool_cleanup_pt)(void *data);

typedef struct ngx_pool_cleanup_s  ngx_pool_cleanup_t;

// 以下结构体由ngx_pool_s.cleanup指向,也是存放在内存池的小块内存
struct ngx_pool_cleanup_s {
    ngx_pool_cleanup_pt   handler;
    void                 *data;     // 指向需要释放的资源
    ngx_pool_cleanup_t   *next;     // 释放资源的函数都放在一个链表,用next指向这个链表
};

nginx提供的函数接口:

// p表示内存池的入口地址,size表示p->cleanup->data指针的大小
// p->cleanup指向含有清理函数信息的结构体
// ngx_pool_cleanup_add返回 含有清理函数信息的结构体 的指针
ngx_pool_cleanup_t* ngx_pool_cleanup_add(ngx_pool_t *p, size_t size){
    ngx_pool_cleanup_t  *c;
	
	// 开辟清理函数的结构体,实际上也是存放在内存池的小块内存
    c = ngx_palloc(p, sizeof(ngx_pool_cleanup_t));
    if (c == NULL) {
        return NULL;
    }
	
    if (size) {
    	// 为c->data申请size的空间
        c->data = ngx_palloc(p, size);
        if (c->data == NULL) {
            return NULL;
        }
    } else {
        c->data = NULL;
    }

    c->handler = NULL;
    // 采用头插法,将当前结构体串在pool->cleanup后
    c->next = p->cleanup;
    p->cleanup = c;

    ngx_log_debug1(NGX_LOG_DEBUG_ALLOC, p->log, 0, "add cleanup: %p", c);

    return c;
}

使用方式:

void release(void* p){
	free(p);
}

ngx_pool_cleanup_t* clean_ptr = ngx_clean_cleanup_add(pool, sizeof(char*));
clean_ptr->handler = &release;   // 用户设置销毁内存池前需要调用的函数
clean_ptr->data = data_ptr->p;   // 用户设置销毁内存池前需要释放的内存的地址

ngx_destroy_pool(pool);          // 用户销毁内存池

七、编译测试内存池接口功能

void ngx_destroy_pool(ngx_pool_t *pool)
{
    ngx_pool_t          *p, *n;
    ngx_pool_large_t    *l;
    ngx_pool_cleanup_t  *c;
	
	// 遍历cleanup链表(存放的时释放前需要调用的函数),可释放外部占用的资源
    for (c = pool->cleanup; c; c = c->next) {
        if (c->handler) {
            ngx_log_debug1(NGX_LOG_DEBUG_ALLOC, pool->log, 0,
                           "run cleanup: %p", c);
            c->handler(c->data);
        }
    }

	// 释放大块内存
    for (l = pool->large; l; l = l->next) {
        if (l->alloc) {
            ngx_free(l->alloc);
        }
    }
	
	// 释放小块内存池
    for (p = pool, n = pool->d.next; /* void */; p = n, n = n->d.next) {
        ngx_free(p);
        
        if (n == NULL) {
            break;
        }
    }
}

nginx内存池源码分析

执行configure生成Makefile文件(若报错则表示需要apt安装软件)

nginx内存池源码分析

Makefile如下:

nginx内存池源码分析

执行make命令使用Makefile编译源码,在相应目录下生成 .o文件

nginx内存池源码分析

#include <ngx_config.h>
#include <nginx.h>
#include <ngx_core.h>
#include <ngx_palloc.h>
#include <stdio.h>
#include <stdlib.h>
#include <string.h>

void ngx_log_error_core(ngx_uint_t level, ngx_log_t *log, ngx_err_t err,
            const char *fmt, ...){

}

typedef struct Data stData;
struct Data{
    char *ptr;
    FILE *pfile;
};

void func1(char *p){
    printf("free ptr mem!\n");
    free(p);
}

void func2(FILE *pf){
    printf("close file!\n");
    fclose(pf);
}

void main(){
	// max = 512 - sizeof(ngx_pool_t)
	// 创建总空间为512字节的nginx内存块
    ngx_pool_t *pool = ngx_create_pool(512, NULL);
    if(pool == NULL){
        printf("ngx_create_pool fail...");
        return;
    }
    
	// 从小块内存池分配的
    void *p1 = ngx_palloc(pool, 128); 
    if(p1 == NULL){
        printf("ngx_palloc 128 bytes fail...");
        return;
    }
	
	// 从大块内存池分配的
    stData *p2 = ngx_palloc(pool, 512); 
    if(p2 == NULL){
        printf("ngx_palloc 512 bytes fail...");
        return;
    }
    
    // 占用外部堆内存
    p2->ptr = malloc(12);
    strcpy(p2->ptr, "hello world");
    // 文件描述符
    p2->pfile = fopen("data.txt", "w");
    
    ngx_pool_cleanup_t *c1 = ngx_pool_cleanup_add(pool, sizeof(char*));
    c1->handler = func1;   // 设置回调函数
    c1->data = p2->ptr;    // 设置资源地址

    ngx_pool_cleanup_t *c2 = ngx_pool_cleanup_add(pool, sizeof(FILE*));
    c2->handler = func2;
    c2->data = p2->pfile;
	
	// 1.调用所有的预置的清理函数 2.释放大块内存 3.释放小块内存池所有内存
    ngx_destroy_pool(pool); 

    return;
}

nginx内存池源码分析

由于ngx_pool_cleanup_add中用头插法将创建的清理块链入pool->cleanup,所以ngx_destroy_pool的时候先清理文件后清理堆内存。

到此,相信大家对“nginx内存池源码分析”有了更深的了解,不妨来实际操作一番吧!这里是亿速云网站,更多相关内容可以进入相关频道进行查询,关注我们,继续学习!

向AI问一下细节

免责声明:本站发布的内容(图片、视频和文字)以原创、转载和分享为主,文章观点不代表本网站立场,如果涉及侵权请联系站长邮箱:is@yisu.com进行举报,并提供相关证据,一经查实,将立刻删除涉嫌侵权内容。

AI