这篇文章主要介绍“基于Redis如何实现阻塞队列”,在日常操作中,相信很多人在基于Redis如何实现阻塞队列问题上存在疑惑,小编查阅了各式资料,整理出简单好用的操作方法,希望对大家解答”基于Redis如何实现阻塞队列”的疑惑有所帮助!接下来,请跟着小编一起来学习吧!
基于 Redis 的 list 实现队列的方式也有多种,先说第一种不推荐的方式,即使用LPUSH
生产消息,然后 while(true) 中通过RPOP
消费消息,这种方式的确可以实现,但是不断代码不断的轮询,势必会消耗一些系统的资源。
第二种方式也是不推荐的方式,也是通过 LPUSH
生产消息,然后通过 BRPOP
进行阻塞地等待并消费消息,这种方式较第一种方式减少了无用的轮询,降低系统资源的消耗,但是可能会存在队列消息丢失的情况,如果取出了消息然后处理失败,这个被取出的消息就将丢失。
第二种方式就是下文要介绍的方式,首先也是通过 LPUSH
生产消息,然后通过 BRPOPLPUSH
阻塞地等待 list 新消息到来,有了新消息才开始消费,同时将消息备份到另外一个 list 当中,这种方式具备了第二种方式的优点,即减少了无用的轮询,同时也对消息进行了备份不会丢失数据,如果处理成功,可以通过 LREM
对备份的 list 中当前的这条消息进行删除处理。
# 将一个或多个值 value 插入到列表 key 的表头 LPUSH key value [value …] # 阻塞式等待,将列表 source 中的最后一个元素 (尾元素) 弹出,并返回给客户端。将 source 弹出的元素插入到列表 destination ,作为 destination 列表的的头元素。超时参数 timeout 接受一个以秒为单位的数字作为值。超时参数设为 0 表示阻塞时间可以无限期延长 (block indefinitely) 。 BRPOPLPUSH source destination timeout # 根据参数 count 的值,移除列表中与参数 value 相等的元素。 LREM key count value
笔者使用的是 Spring 相关 API 实现对 Redis 指令的调用。首先实现消息的生产代码,封装到一个工具类方法当中。这里很简单,就是调用了 lpush 方法,将序列化的 key 和 value 添加到列表当中去。
@Resource private RedisConnectionFactory connectionFactory; public void lPush(@Nonnull String key, @Nonnull String value) { RedisConnection connection = RedisConnectionUtils.getConnection(connectionFactory); try { byte[] byteKey = RedisSerializer.string().serialize(getKey(key)); byte[] byteValue = RedisSerializer.string().serialize(value); assert byteKey != null; connection.lPush(byteKey, byteValue); } finally { RedisConnectionUtils.releaseConnection(connection, connectionFactory); } }
因为实现队列消费消息的代码比较多,不可能每个需要阻塞消费的地方,对需要写这一坨代码,因此使用 Java8 的函数式接口实现方法的传递,同时阻塞式获取消息代码使用新线程去执行。
有人看到以下代码要吐槽了,不是说不用 while(true) 吗,怎么你这里面还是有,这里稍微解释一下,因为 SpringBoot 一般会指定 timeout 的全局超时时间,即使 BRPOPLPUSH
设置了 0,即无限期,当超出了 timeout 设置的值时,就会抛出 QueryTimeoutException 异常导致线程退出,因此添加了 try/catch 对异常进行捕获并忽略,同时使用 while(true) 保证线程可以继续执行。
代码中记录了当前消息处理结果,如果处理结果为成功,需要对备份队列的当前消息进行删除。
public void bRPopLPush(@Nonnull String key, Consumer<String> consumer) { CompletableFuture.runAsync(() -> { RedisConnection connection = RedisConnectionUtils.getConnection(connectionFactory); try { byte[] srcKey = RedisSerializer.string().serialize(getKey(key)); byte[] dstKey = RedisSerializer.string().serialize(getBackupKey(key)); assert srcKey != null; assert dstKey != null; while (true) { byte[] byteValue = new byte[0]; boolean success = false; try { byteValue = connection.bRPopLPush(0, srcKey, dstKey); if (byteValue != null && byteValue.length != 0) { consumer.accept(new String(byteValue)); success = true; } } catch (Exception ignored) { // 防止获取 key 达到超时时间抛出 QueryTimeoutException 异常退出 } finally { if (success) { // 处理成功才删除备份队列的 key connection.lRem(dstKey, 1, byteValue); } } } } finally { RedisConnectionUtils.releaseConnection(connection, connectionFactory); } }); }
@Test public void testLPush() throws InterruptedException { String queueA = "queueA"; int i = 0; while (true) { String msg = "Hello-" + i++; redisBlockQueue.lPush(queueA, msg); System.out.println("lPush: " + msg); Thread.sleep(3000); } } @Test public void testBRPopLPush() { String queueA = "queueA"; redisBlockQueue.bRPopLPush(queueA, (val) -> { // 在这里处理具体的业务逻辑 System.out.println("val: " + val); }); // 防止 Junit 进程退出 LockSupport.park(); }
为了方便使用,我将其抽取为了一个工具类,使用时通过 Spring 注入使用即可,
队列消费可以使用如下方式在项目启动的时候就进行阻塞监听队列,等待消费
@Resource private RedisBlockQueue redisBlockQueue; @PostConstruct public void init() { redisBlockQueue.bRPopLPush(xx, (value) -> { //... }); }
到此,关于“基于Redis如何实现阻塞队列”的学习就结束了,希望能够解决大家的疑惑。理论与实践的搭配能更好的帮助大家学习,快去试试吧!若想继续学习更多相关知识,请继续关注亿速云网站,小编会继续努力为大家带来更多实用的文章!
免责声明:本站发布的内容(图片、视频和文字)以原创、转载和分享为主,文章观点不代表本网站立场,如果涉及侵权请联系站长邮箱:is@yisu.com进行举报,并提供相关证据,一经查实,将立刻删除涉嫌侵权内容。