温馨提示×

温馨提示×

您好,登录后才能下订单哦!

密码登录×
登录注册×
其他方式登录
点击 登录注册 即表示同意《亿速云用户服务条款》

基于Python PaddleSpeech怎么实现语音文字处理

发布时间:2022-01-06 13:18:32 来源:亿速云 阅读:753 作者:柒染 栏目:开发技术

基于Python PaddleSpeech怎么实现语音文字处理,针对这个问题,这篇文章详细介绍了相对应的分析和解答,希望可以帮助更多想解决这个问题的小伙伴找到更简单易行的方法。

    环境安装

    首先我们看一下项目结构以及安装文档。

    基于Python PaddleSpeech怎么实现语音文字处理

    需要Python3.7以上、C++环境、requirements安装等等,下面按照我的顺序说一下。

    1、conda安装Python3.9虚拟环境

    使用conda安装python3.9环境,命令如下。

    conda create -n py39 python=3.9

    2、安装Visual Studio 2019

    安装地址: Microsoft C++ 生成工具 - Visual Studio

    注意安装的时候需要勾选C++桌面开发。

    3、安装requirements.txt

    使用命令安装requiremets.txt,命令如下:

    pip install -r requirements.txt -i https://pypi.douban.com/simple

    这里要注意一下,paddlespeech_ctcdecoders安装失败的话无所谓,可以略掉。

    4、安装paddlepaddle和paddlespeech

    命令如下:

    pip install paddlepaddle -i https://mirror.baidu.com/pypi/simple
    pip install paddlespeech -i https://pypi.tuna.tsinghua.edu.cn/simple

    5、nltk_data下载

    按照项目安装文档内的说明。

    基于Python PaddleSpeech怎么实现语音文字处理

    我的本地目录地址如下

    基于Python PaddleSpeech怎么实现语音文字处理

    项目验证

    我下面分别验证一下tts、asr以及标点恢复功能。

    tts语音合成

    使用命令如下:

    paddlespeech tts --input "南京现在很冷,下次再去夫子庙吧。" --output C:\Users\xxx\Desktop\115.wav

    执行过程

    (dh_partner) D:\spyder\PaddleSpeech>paddlespeech tts --input "南京现在很冷,下次再去夫子庙吧。" --output C:\Users\xxx\Desktop\115.wav
    phones_dict: None
    [2022-01-05 17:23:43,642] [    INFO] [log.py] [L57] - File C:\Users\huyi\.paddlespeech\models\fastspeech3_csmsc-zh\fastspeech3_nosil_baker_ckpt_0.4.zip md5 checking...
    [2022-01-05 17:23:44,742] [    INFO] [log.py] [L57] - Use pretrained model stored in: C:\Users\huyi\.paddlespeech\models\fastspeech3_csmsc-zh\fastspeech3_nosil_baker_ckpt_0.4
    self.phones_dict: C:\Users\huyi\.paddlespeech\models\fastspeech3_csmsc-zh\fastspeech3_nosil_baker_ckpt_0.4\phone_id_map.txt
    [2022-01-05 17:23:44,743] [    INFO] [log.py] [L57] - C:\Users\huyi\.paddlespeech\models\fastspeech3_csmsc-zh\fastspeech3_nosil_baker_ckpt_0.4
    [2022-01-05 17:23:44,744] [    INFO] [log.py] [L57] - C:\Users\huyi\.paddlespeech\models\fastspeech3_csmsc-zh\fastspeech3_nosil_baker_ckpt_0.4\default.yaml
    [2022-01-05 17:23:44,744] [    INFO] [log.py] [L57] - C:\Users\huyi\.paddlespeech\models\fastspeech3_csmsc-zh\fastspeech3_nosil_baker_ckpt_0.4\snapshot_iter_76000.pdz
    self.phones_dict: C:\Users\huyi\.paddlespeech\models\fastspeech3_csmsc-zh\fastspeech3_nosil_baker_ckpt_0.4\phone_id_map.txt
    [2022-01-05 17:23:44,745] [    INFO] [log.py] [L57] - File C:\Users\huyi\.paddlespeech\models\pwgan_csmsc-zh\pwg_baker_ckpt_0.4.zip md5 checking...
    [2022-01-05 17:23:44,782] [    INFO] [log.py] [L57] - Use pretrained model stored in: C:\Users\huyi\.paddlespeech\models\pwgan_csmsc-zh\pwg_baker_ckpt_0.4
    [2022-01-05 17:23:44,783] [    INFO] [log.py] [L57] - C:\Users\huyi\.paddlespeech\models\pwgan_csmsc-zh\pwg_baker_ckpt_0.4
    [2022-01-05 17:23:44,783] [    INFO] [log.py] [L57] - C:\Users\huyi\.paddlespeech\models\pwgan_csmsc-zh\pwg_baker_ckpt_0.4\pwg_default.yaml
    [2022-01-05 17:23:44,785] [    INFO] [log.py] [L57] - C:\Users\huyi\.paddlespeech\models\pwgan_csmsc-zh\pwg_baker_ckpt_0.4\pwg_snapshot_iter_400000.pdz
    vocab_size: 268
    frontend done!
    encoder_type is transformer
    decoder_type is transformer
    C:\Users\huyi\.conda\envs\dh_partner\lib\site-packages\paddle\framework\io.py:415: DeprecationWarning: Using or importing the ABCs from 'collections' instead of from 'collections.abc' i
    s deprecated since Python 3.3, and in 3.10 it will stop working
      if isinstance(obj, collections.Iterable) and not isinstance(obj, (
    acoustic model done!
    voc done!
    Building prefix dict from the default dictionary ...
    [2022-01-05 17:23:51] [DEBUG] [__init__.py:113] Building prefix dict from the default dictionary ...
    Loading model from cache C:\Users\huyi\AppData\Local\Temp\jieba.cache
    [2022-01-05 17:23:51] [DEBUG] [__init__.py:132] Loading model from cache C:\Users\huyi\AppData\Local\Temp\jieba.cache
    Loading model cost 0.659 seconds.
    [2022-01-05 17:23:52] [DEBUG] [__init__.py:164] Loading model cost 0.659 seconds.
    Prefix dict has been built successfully.
    [2022-01-05 17:23:52] [DEBUG] [__init__.py:166] Prefix dict has been built successfully.
    C:\Users\huyi\.conda\envs\dh_partner\lib\site-packages\paddle\fluid\dygraph\math_op_patch.py:251: UserWarning: The dtype of left and right variables are not the same, left dtype is padd
    le.int64, but right dtype is paddle.int32, the right dtype will convert to paddle.int64
      warnings.warn(
    [2022-01-05 17:23:58,811] [    INFO] [log.py] [L57] - Wave file has been generated: C:\Users\xxx\Desktop\115.wav

    生成的音频如下

    基于Python PaddleSpeech怎么实现语音文字处理

    asr语音识别

    我就使用了tts生成的音频进行asr识别,看看效果,命令如下:

    paddlespeech asr --lang zh --input C:\Users\xxx\Desktop\115.wav

    执行结果如下

    基于Python PaddleSpeech怎么实现语音文字处理

    可以看到最后打印的内容是没有标点的文字输出,还是比较准的。

    标点恢复

    就用这句话试试标点恢复的情况,命令如下:

    paddlespeech text --task punc --input 南京现在很冷下次再去夫子庙吧

    执行结果

    基于Python PaddleSpeech怎么实现语音文字处理

    关于基于Python PaddleSpeech怎么实现语音文字处理问题的解答就分享到这里了,希望以上内容可以对大家有一定的帮助,如果你还有很多疑惑没有解开,可以关注亿速云行业资讯频道了解更多相关知识。

    向AI问一下细节

    免责声明:本站发布的内容(图片、视频和文字)以原创、转载和分享为主,文章观点不代表本网站立场,如果涉及侵权请联系站长邮箱:is@yisu.com进行举报,并提供相关证据,一经查实,将立刻删除涉嫌侵权内容。

    AI