这篇文章主要为大家展示了“Python中的Seaborn怎么使用sns.set_palette()”,内容简而易懂,条理清晰,希望能够帮助大家解决疑惑,下面让小编带领大家一起研究并学习一下“Python中的Seaborn怎么使用sns.set_palette()”这篇文章吧。
如果你想将默认调色板自定义为你喜欢的颜色组合,此功能非常方便。我们可以使用Matplotlib中的彩色映射。这里是从颜色库中选择的。让我们将调色板更改为“rainbow”并再次查看该图:
# 更改默认调色板 sns.set_palette('rainbow') # 图 plt.figure(figsize=(9, 5)) sns.scatterplot(data=df, x='body_mass_g', y='bill_length_mm', alpha=0.7, hue='species', size='gender') plt.legend(loc='upper right', bbox_to_anchor=(1.3, 1));
如果找不到你喜欢的Matplotlib颜色映射,可以手动选择颜色来创建自己独特的调色板。 创建自己调色板的一种方法是将颜色名称列表传递给函数,如下例所示。
# 更改默认调色板 sns.set_palette(['green', 'purple', 'red']) # 图 plt.figure(figsize=(9, 5)) sns.scatterplot(data=df, x='body_mass_g', y='bill_length_mm', alpha=0.7, hue='species', size='gender') plt.legend(loc='upper right', bbox_to_anchor=(1.3, 1));
如果颜色名称不能很好地捕捉到你所追求的,你可以使用十六进制颜色构建自己的调色板来访问更广泛的选项(超过1600万种颜色!)。这里是我最喜欢的资源,可以找到一个十六进制的自定义调色板。我们来看一个例子:
# 更改默认调色板 sns.set_palette(['#62C370', '#FFD166', '#EF476F']) # 图 plt.figure(figsize=(9, 5)) sns.scatterplot(data=df, x='body_mass_g', y='bill_length_mm', alpha=0.7, hue='species', size='gender') plt.legend(loc='upper right', bbox_to_anchor=(1.3, 1));
以上是“Python中的Seaborn怎么使用sns.set_palette()”这篇文章的所有内容,感谢各位的阅读!相信大家都有了一定的了解,希望分享的内容对大家有所帮助,如果还想学习更多知识,欢迎关注亿速云行业资讯频道!
免责声明:本站发布的内容(图片、视频和文字)以原创、转载和分享为主,文章观点不代表本网站立场,如果涉及侵权请联系站长邮箱:is@yisu.com进行举报,并提供相关证据,一经查实,将立刻删除涉嫌侵权内容。