(1)创建数据库create database db_hive2;`<br/>`或者`<br/>`create database if not exists db_hive;
数据库在HDFS上的默认存储路径/user/hive/warehouse/*.db
(2)显示所有数据库show databases;
(3)查询数据库show database like ‘db_hive’;
(4)查询数据库详情desc database db_hive;
(5)显示数据库 desc database extended db_hive;
(6)切换当前数据库use db_hive;
(7)删除数据库
#删除为空的数据控drop database db_hive;
#如果删除的数据库不存在,最好采用if exists判断数据库是否存在drop database if exists db_hive;
#如果数据库中有表存在,需要使用cascade强制删除数据库drop database if exists db_hive cascade
;
CREATE [EXTERNAL] TABLE [IF NOT EXISTS] table_name
[(col_name data_type [COMMENT col_comment], ...)]
[COMMENT table_comment] 表的描述可加可不加
[PARTITIONED BY (col_name data_type [COMMENT col_comment], ...)] 分区
[CLUSTERED BY (col_name, col_name, ...) 分桶
[SORTED BY (col_name [ASC|DESC], ...)] INTO num_buckets BUCKETS]
重点:读取文本是读一行数据,需要用分隔符分割,用来匹配表的列
[ROW FORMAT row_format] row format delimited fields terminated by “分隔符”
[STORED AS file_format] 存储对应的文件格式
[LOCATION hdfs_path]存储在hdfs的哪个目录
字段解释说明:
CREATE TABLE :创建指定名称的表,如果存在报异常,可以使用 IF NOT EXISTS :来避免这个异常。
EXTERNAL:创建外部表,在建表的同时可以指定源数据的路径LOCATION:创建内部表时,会将数据移动到数据仓库指向的路径,若创建外部表不会有任何改变。在删除表时,内部表的元数据和源数据都会被删除,外部表不会删除源数据。
COMMENT:为表和列增加注释
PARTITIONED BY:创建分区表
CLUSTERED BY:创建分桶表
SORTED BY:创建排序后分桶表(不常用)
STORED AS :指定存储文件类型sequencefile(二进制序列文件)、textfile(文本)、rcfile(列式存储格式文件),如果文件数据是纯文本,可以使用STORED AS TEXTFILE。如果需要使用压缩,使用STORED AS SEQUENCEFILE
LOCATION 指定表在 hdfs 上的存储位置
1、直接使用标准的建表语句:
create table if not exists student11(
id int,
name string
)
row format delimited fields terminated by '\t'
stored as textfile;
使用文本data.txt
1 zhang
2 lisi
2、查询建表法:
通过AS查询语句完成建表:将子查询的结果存放在新表里,有数据
create table if not exists student1 as select id,name from student;
3、like建表法:
根据已存在的表结构创建表
create table if not exists student2 like student;
4、查询表的类型:
desc formatted student;
5、内部表的默认位置:
(根据自己情况来定)
/user/hive_remote/warehouse/db_hive.db
6、将数据导入到Hive表中:
举列子:student11s是Hive表
load data local inpath '/opt/bigdata2.7/hivedata/student.txt' into table student11;
注意:default是数据库的名
create external table if not exists default.emp(
id int,
name string
)
row format delimited fields terminated by '\t'
location '/ opt/bigdata2.7/hivedata'
创建外部表的时候需要加上external关键字,location字段可以指定,也可以不指定,不指定的话就是使用默认目录/user/hive/warehouse
1、内部表转换为外部表
#把student 内部表改为外部表
alter table student set tblproperties('EXTERNAL'='TRUE');
2、外部表转换成内部表
alter table student set tblproperties('EXTERNAL'='FALSE');
1、建表语法不同:
外部表建表的时候需要加上external关键字
2、数据存储位置不同:
创建内部表的时候,会将数据移动到数据仓库指向的路径;若创建外部表,仅仅记录数据所在的路径,不对数据的位置进行任何改变。
2、删除表之后:
内部表会删除元数据,删除表的数据。
外部表删除之后,仅仅是把表的元数据删除了,真实的数据还在,后期还可以恢复出来。
1、数据格式:
战狼1,吴京1:吴刚1:小明1,2017-08-01
战狼2,吴京2:吴刚2:小明2,2017-08-02
战狼3,吴京4:吴刚4:小明4,2017-08-03
战狼4,吴京3:吴刚3:小明3,2017-08-04
战狼5,吴京5:吴刚5:小明5,2017-08-05
2、建表语句:
create table t_movie(movie_name string,actors array<string>,first_date string)
row format delimited fields terminated by ','
collection items terminated by ':';
3、导入数据:
确保hadoop用户对该文件夹有读写权限。load data local inpath '/opt/bigdata2.7/hive/movie';
4、查询每个电影的第二个主演:
select movie_name,actors[1] from t_movie;
[外链图片转存失败,源站可能有防盗链机制,建议将图片保存下来直接上传(img-hgfz0RZZ-1579482997640)(2%E3%80%81Hive%E7%9A%84DDL%E8%AF%AD%E6%B3%95%E6%93%8D%E4%BD%9C.assets/image-20200109093038358.png)]
5、查询每部电影有几名主演:
select movie_name,size(actors) as num from t_movie;
6、主演里包含吴刚5的电影
select movie_name,actors from t_movie where array_contains(actors,'吴刚5');
解析:
这里我们首先看到比较特殊的是主演的名字,而名字有都是string类型的,所以考虑到使用array类型,以为array存储的都是想同类型的元素。这里我们要使用collection items terminated by ':',来设置指定复杂元素数据类型中元素的分隔符。
需要注意的是:collection items terminated by不仅是用来分隔array的,它的作用是分隔复杂数据类型里面的元素的。size内置函数是用来判断array元素的个数,array_contains()是判断array是否有这个元素。
1、数据格式:
1,张三,18:male:北京
2,李四,19:male:南京
3,王五,20:male:上海
4,哈哈,18:male:北京
5,嘿嘿,12:male:成都
6,嘻嘻,14:male:济南
7,张丽,17:male:深圳
8,李物,19:male:重庆
2、建表语句:
create table t_user(id int,name string,info struct<age:string,sex:string,addr:string>)
row format delimited fields terminated by ','
collection items terminated by ':';
3、导入数据:
load data local inpath '/opt/bigdata2.7/hive/user' into table t_user;
4、 查询每一个人的id,名字,居住地址:
select id,name,info.addr from t_user;
解析:
这里比较特殊的字段是18:male:北京,对应的是年龄:性别:地址,每一个都有特殊的含义,我们考虑到无法构成一个键值对,所以map不合适,array只能包含相同的元素,而年龄是int类型,地址是strin类型,所以array不合适,所以考虑struct。
1、数据描述:
1,小明,father:张三#mother:李丽#brother:小刚,28
2,小鸿,father:李四#mother:王丽#brother:小志,28
3,小鹏,father:张物#mother:李美#brother:小英,28
4,张飞,father:张五#mother:李影#brother:小全,28
2、建表语句:
create table t_family(id int,name string,family_mem map<string,string>,age int)
row format delimited fields terminated by ','
collection items terminated by '#'
map keys terminated by ':';
3、导入数据:
load data local inpath '/opt/bigdata2.7/hive/family' into table t_family;
4、查看每个人的父亲:
select name,family_mem["father"] from t_family;
5、查看有哪些亲属关系:select name,map_keys(family_mem),age from t_family;
6、查出每个人的亲人名字:
select name,map_values(family_mem) as relations,age from t_family;
7、查出每个人亲人的数量:
select id,name,size(family_mem) as relation_num,age from t_family;
alter table student_partition1 rename to student_partition2
desc student_partition3;
desc formated student_partition3;
增加列:
alter table student_partition3 add columns(address string);
修改列:
alter table student_partition3 change column address address_id int;
替换列:
alter table student_partition3 replace columns(deptno string,dname string,loc string);
1、添加分区:
(1)添加单个分区:
alter table student_partition1 add partition(dt='20170601');
(2)添加多个分区:
alter table student_partition1 add partition(dt='20170602') partition(dt='20170603');
2、删除分区:
alter table student_partition1 drop partition (dt='20170601');
alter table student_partition1 drop partition (dt='20170601') partition (dt='20170602');
3、查看分区:
show partitions student_partition1;
load data [local] impath 'datapath' overwrite | into table student [partition (partcol1=val1,...)];
load data: 表示加载数据
local:表示从本地加载数据到hive表中;否则从HDFS加载到hive表中
inpath: 表示加载数据的路径
overwite:表示覆盖表中已有数据,否则表示追加
into table:表示加载到哪张表
普通表举例:
load data local inpath '/opt/bigdata2.7/hive/person.txt' into table person;
分区表举例:
load data local inpath '/opt/bigdata2.7/hive/person.txt' into table person partition (dt="20190202");
从指定的表中查询数据结果然后插入到目标表中
insert into/overwrite table tablename select **** from tablename;
insert into table student_partion1 partition(dt="2019-07-08") select * from tablename;
create table if not exists tablename as select id,name from tablename;
创建表,并指定在hdfs上的位置
create table if not exists student1(
id int,
name string)
row format delimited fields terminated by '\t'
location '/usr/hive_remote/warehouse/student1';
create table if not exists person(
id int,
name string,
age int,
sex string
)
row format delimited fields terminated by ',';
上传数据文件到hdfs对应的目录中
在Linux中运行,注意不是hive端口
hdfs dfs -put /opt/bigdata2.7/hive/student1.txt /usr/hive_remote/warehouse/student1
注意:先用export导出之后,再将数据导入
create table student2 like student1;
export table student1 to '/export/student1';
import table student2 from 'export/student1'
1、将查询数据的结果导出到本地
insert overwrite local directory '/opt/bigdata/export/student' select * from student;
2、将查询结构格式化的导出到本地
insert overwrite local directory '/opt/bigdata/export/student'
row format delimited fields teminated by ','
select * from student;
3、将查询结果导出到HDFS(没有local)
insert overwrite directory '/user/export/student'
row format delimited fields terminated by ','
select * from student;
hdfs dfs -get /user/hive_remote/warehouse/student/student.txt /opt/bigdata2.7/data
hive -e 'select * from default.student' > /opt/bigdata/data/student1.txt
export table default.student to '/user/hive/warehouse/export/student1';
免责声明:本站发布的内容(图片、视频和文字)以原创、转载和分享为主,文章观点不代表本网站立场,如果涉及侵权请联系站长邮箱:is@yisu.com进行举报,并提供相关证据,一经查实,将立刻删除涉嫌侵权内容。