本文小编为大家详细介绍“R语言的univariate_cox_batch.r怎么用”,内容详细,步骤清晰,细节处理妥当,希望这篇“R语言的univariate_cox_batch.r怎么用”文章能帮助大家解决疑惑,下面跟着小编的思路慢慢深入,一起来学习新知识吧。
univariate_cox_batch.r 基因表达量批量单因素cox回归分析
输入生存数据与基因表达量可以做批量单因素cox回归分析
$ Rscript $scriptdir/univariate_cox_batch.r --h usage: univariate_cox_batch.r [-h] -m metadata -g expset [-t time] [-e event] [-l pvalue] [-b blocksize] [--log2] [-o outdir] [-p prefix] batch unvariate cox regression gene expression optional arguments: -h, --help show this help message and exit -m metadata, --metadata metadata input metadata file path with suvival time [required] -g expset, --expset expset input gene expression set file [required] -t time, --time time set suvival time column name in metadata [default TIME] -e event, --event event set event column name in metadata [default EVENT] -l pvalue, --pvalue pvalue pvalue cutoff to choose sig gene [default 0.01] -b blocksize, --blocksize blocksize Number of variables Parallel to test in each [default 2] --log2 whether do log2 transfrom for expression data [optional, default: False] -o outdir, --outdir outdir output file directory [default cwd] -p prefix, --prefix prefix out file name prefix [default cox]
-m 输入生存数据:
event 列: 0表示事件没有发生,1表示事件发生; 0表示alive,1表示死亡;
barcode | TIME | EVENT |
TCGA-B7-A5TK-01A-12R-A36D-31 | 288 | 0 |
TCGA-BR-7959-01A-11R-2343-13 | 1010 | 0 |
TCGA-IN-8462-01A-11R-2343-13 | 572 | 0 |
TCGA-CG-4443-01A-01R-1157-13 | 912 | 0 |
TCGA-KB-A93J-01A-11R-A39E-31 | 1124 | 0 |
TCGA-HU-A4H3-01A-21R-A251-31 | 882 | 0 |
TCGA-RD-A8MV-01A-11R-A36D-31 | 3720 | 0 |
TCGA-VQ-A91X-01A-12R-A414-31 | 289 | 1 |
TCGA-D7-8575-01A-11R-2343-13 | 554 | 1 |
TCGA-BR-8485-01A-11R-2402-13 | 280 | 0 |
TCGA-D7-A748-01A-12R-A32D-31 | 132 | 1 |
TCGA-VQ-A91Z-01A-11R-A414-31 | 1690 | 0 |
-g 输入基因表达量文件
ID | TCGA-B7-A5TK-01A-12R-A36D-31 | TCGA-BR-7959-01A-11R-2343-13 | TCGA-IN-8462-01A-11R-2343-13 | TCGA-BR-A4CR-01A-11R-A24K-31 | TCGA-CG-4443-01A-01R-1157-13 | TCGA-KB-A93J-01A-11R-A39E-31 | TCGA-BR-4371-01A-01R-1157-13 | TCGA-IN-A6RO-01A-12R-A33Y-31 | TCGA-HU-A4H3-01A-21R-A251-31 |
FGR | 16.34408 | 11.96739 | 5.350846 | 2.209351 | 1.53802 | 15.24016 | 4.501118 | 2.602437 | 6.261761 |
CD38 | 86.86772 | 15.79451 | 3.111342 | 1.240707 | 0.862955 | 13.3047 | 3.728708 | 1.673952 | 2.675173 |
ITGAL | 40.26903 | 7.358566 | 3.769125 | 2.387869 | 2.37351 | 38.08591 | 8.305283 | 3.622781 | 7.025886 |
CX3CL1 | 603.0132 | 26.91353 | 20.22238 | 4.195262 | 19.04097 | 14.15295 | 13.75885 | 6.675374 | 4.050271 |
CEACAM21 | 1.868536 | 2.571917 | 0.610839 | 0.674558 | 1.092127 | 3.483559 | 1.134309 | 4.471274 | 0.584159 |
MATK | 2.28342 | 0.864116 | 0.519776 | 2.442093 | 0.760348 | 3.192951 | 1.161881 | 0.347882 | 1.039336 |
CD79B | 3.453198 | 1.879957 | 2.822192 | 0.523587 | 1.926592 | 3.651742 | 0.831288 | 0.883643 | 1.979214 |
MMP25 | 13.72829 | 3.451148 | 1.106563 | 1.131217 | 0.878735 | 10.43186 | 1.475852 | 1.914284 | 2.312993 |
TRAF3IP3 | 5.24401 | 1.880186 | 0.875264 | 0.756153 | 0.603251 | 3.325013 | 2.347473 | 0.570462 | 1.315916 |
CD4 | 77.74691 | 51.83719 | 22.77076 | 11.07811 | 35.20445 | 122.5578 | 31.10107 | 15.06619 | 15.41347 |
BTK | 6.856235 | 4.362261 | 1.482688 | 1.371599 | 1.981236 | 6.91154 | 3.187848 | 0.955499 | 1.48269 |
FMO1 | 7.168567 | 7.711817 | 3.223174 | 0.979034 | 0.450307 | 1.093412 | 1.001808 | 0.910204 | 1.558515 |
SYT7 | 1.153105 | 81.94068 | 2.673384 | 191.6112 | 82.49394 | 0.510373 | 4.470482 | 1.28506 | 0.91944 |
TYROBP | 591.7796 | 338.0271 | 184.8133 | 69.18483 | 150.6397 | 480.5691 | 121.096 | 72.4588 | 116.9793 |
CD22 | 0.819295 | 2.521607 | 1.588505 | 0.41259 | 0.387288 | 1.123633 | 0.488244 | 0.258094 | 0.713988 |
Rscript $scriptdir/univariate_cox_batch.r -m metadata_survival_time.tsv \ -g deg_gene_exp_tpm.tsv -e EVENT -t TIME -p imm.unicox --pvalue 0.01
批量cox分析 结果:
Variable | Term | Beta | StandardError | Z | P | LRT | Wald | LogRank | HR | HRlower | HRupper |
SYT12 | SYT12 | 0.091121 | 0.019495 | 4.674035 | 2.95E-06 | 0.000128 | 2.95E-06 | 1.80E-06 | 1.095402 | 1.054336 | 1.138067 |
CDH2 | CDH2 | 0.013266 | 0.003014 | 4.401803 | 1.07E-05 | 0.001993 | 1.07E-05 | 2.11E-07 | 1.013354 | 1.007386 | 1.019357 |
GPNMB | GPNMB | 0.002759 | 0.000768 | 3.590118 | 0.000331 | 0.001313 | 0.000331 | 0.000409 | 1.002762 | 1.001253 | 1.004274 |
TMIGD3 | TMIGD3 | 0.06788 | 0.019314 | 3.514468 | 0.000441 | 0.001248 | 0.000441 | 0.000419 | 1.070237 | 1.03048 | 1.111528 |
LINC01094 | LINC01094 | 0.132441 | 0.040375 | 3.280293 | 0.001037 | 0.002242 | 0.001037 | 0.001026 | 1.141611 | 1.054754 | 1.235621 |
SLC22A20P | SLC22A20P | 0.049415 | 0.01583 | 3.12165 | 0.001798 | 0.012065 | 0.001798 | 0.000736 | 1.050656 | 1.018559 | 1.083765 |
IGHV4-61 | IGHV4-61 | 0.001791 | 0.000582 | 3.077573 | 0.002087 | 0.00859 | 0.002087 | 0.001742 | 1.001793 | 1.000651 | 1.002937 |
IGHV2-5 | IGHV2-5 | 0.002236 | 0.000737 | 3.034961 | 0.002406 | 0.007782 | 0.002406 | 0.002205 | 1.002238 | 1.000792 | 1.003686 |
SERPINA5 | SERPINA5 | 0.007681 | 0.002558 | 3.002428 | 0.002678 | 0.009799 | 0.002678 | 0.002064 | 1.007711 | 1.00267 | 1.012776 |
MS4A4A | MS4A4A | 0.01446 | 0.00505 | 2.863218 | 0.004194 | 0.008427 | 0.004194 | 0.004722 | 1.014565 | 1.004572 | 1.024657 |
FAM83A | FAM83A | 0.006237 | 0.002368 | 2.633445 | 0.008452 | 0.028523 | 0.008452 | 0.007295 | 1.006256 | 1.001596 | 1.010938 |
IGLV3-9 | IGLV3-9 | 0.000547 | 0.00021 | 2.608281 | 0.0091 | 0.039427 | 0.0091 | 0.010244 | 1.000547 | 1.000136 | 1.000958 |
STARD3 | STARD3 | 0.000928 | 0.000358 | 2.588913 | 0.009628 | 0.030258 | 0.009628 | 0.006743 | 1.000928 | 1.000225 | 1.001631 |
读到这里,这篇“R语言的univariate_cox_batch.r怎么用”文章已经介绍完毕,想要掌握这篇文章的知识点还需要大家自己动手实践使用过才能领会,如果想了解更多相关内容的文章,欢迎关注亿速云行业资讯频道。
免责声明:本站发布的内容(图片、视频和文字)以原创、转载和分享为主,文章观点不代表本网站立场,如果涉及侵权请联系站长邮箱:is@yisu.com进行举报,并提供相关证据,一经查实,将立刻删除涉嫌侵权内容。