温馨提示×

温馨提示×

您好,登录后才能下订单哦!

密码登录×
登录注册×
其他方式登录
点击 登录注册 即表示同意《亿速云用户服务条款》

Pandas如何实现分组数据

发布时间:2022-03-11 11:09:33 来源:亿速云 阅读:152 作者:小新 栏目:开发技术

这篇文章给大家分享的是有关Pandas如何实现分组数据的内容。小编觉得挺实用的,因此分享给大家做个参考,一起跟随小编过来看看吧。

分组数据

这种操作在数据科学家和分析师的日常生活中经常执行。Pandas提供了一个基本的函数来执行数据分组,即Groupby

Groupby操作包括根据特定条件拆分对象,应用函数,然后组合结果。

让我们再看一次贷款预测数据集,假设我想看看给来自不同财产领域的人的平均贷款额,比如农村、半城市和城市。花点时间来理解这个问题陈述并思考如何解决它。

嗯,Pandasgroupby可以非常有效地解决这个问题。首先根据属性区域划分数据。其次,我们将mean()函数应用于每个类别。最后,我们将它们组合在一起,并将其打印为新的数据帧。

#导入数据集
import pandas as pd


df = pd.read_csv('../Data/loan_train.csv')
df.head()


# 男女平均收入
df.groupby(['Gender'])[['ApplicantIncome']].mean()


# 平均贷款金额不同的财产地区,如城市,农村
df.groupby(['Property_Area'])[['LoanAmount']].mean()


# 比较不同教育背景的贷款状况
df.groupby(['Education'])[['Loan_Status']].count()

感谢各位的阅读!关于“Pandas如何实现分组数据”这篇文章就分享到这里了,希望以上内容可以对大家有一定的帮助,让大家可以学到更多知识,如果觉得文章不错,可以把它分享出去让更多的人看到吧!

向AI问一下细节

免责声明:本站发布的内容(图片、视频和文字)以原创、转载和分享为主,文章观点不代表本网站立场,如果涉及侵权请联系站长邮箱:is@yisu.com进行举报,并提供相关证据,一经查实,将立刻删除涉嫌侵权内容。

AI