温馨提示×

温馨提示×

您好,登录后才能下订单哦!

密码登录×
登录注册×
其他方式登录
点击 登录注册 即表示同意《亿速云用户服务条款》

使用tensorflow2自定义损失函数需要注意什么

发布时间:2022-02-18 14:41:43 来源:亿速云 阅读:222 作者:小新 栏目:开发技术

小编给大家分享一下使用tensorflow2自定义损失函数需要注意什么,相信大部分人都还不怎么了解,因此分享这篇文章给大家参考一下,希望大家阅读完这篇文章后大有收获,下面让我们一起去了解一下吧!

Keras的核心原则是逐步揭示复杂性,可以在保持相应的高级便利性的同时,对操作细节进行更多控制。当我们要自定义fit中的训练算法时,可以重写模型中的train_step方法,然后调用fit来训练模型。

这里以tensorflow2官网中的例子来说明:

import numpy as np
import tensorflow as tf
from tensorflow import keras
x = np.random.random((1000, 32))
y = np.random.random((1000, 1))
class CustomModel(keras.Model):
   tf.random.set_seed(100)
   def train_step(self, data):
       # Unpack the data. Its structure depends on your model and       # on what you pass to `fit()`.       x, y = data

       with tf.GradientTape() as tape:
           y_pred = self(x, training=True)  # Forward pass           # Compute the loss value           # (the loss function is configured in `compile()`)           loss = self.compiled_loss(y, y_pred, regularization_losses=self.losses)

       # Compute gradients       trainable_vars = self.trainable_variables
       gradients = tape.gradient(loss, trainable_vars)
       # Update weights       self.optimizer.apply_gradients(zip(gradients, trainable_vars))
       # Update metrics (includes the metric that tracks the loss)       self.compiled_metrics.update_state(y, y_pred)
       # Return a dict mapping metric names to current value       return {m.name: m.result() for m in self.metrics}
   # Construct and compile an instance of CustomModelinputs = keras.Input(shape=(32,))
outputs = keras.layers.Dense(1)(inputs)
model = CustomModel(inputs, outputs)
model.compile(optimizer="adam", loss=tf.losses.MSE, metrics=["mae"])# Just use `fit` as usualmodel.fit(x, y, epochs=1, shuffle=False)
32/32 [==============================] - 0s 1ms/step - loss: 0.2783 - mae: 0.4257

这里的loss是tensorflow库中实现了的损失函数,如果想自定义损失函数,然后将损失函数传入model.compile中,能正常按我们预想的work吗?

答案竟然是否定的,而且没有错误提示,只是loss计算不会符合我们的预期。

def custom_mse(y_true, y_pred):
   return tf.reduce_mean((y_true - y_pred)**2, axis=-1)
a_true = tf.constant([1., 1.5, 1.2])
a_pred = tf.constant([1., 2, 1.5])
custom_mse(a_true, a_pred)

tf.losses.MSE(a_true, a_pred)

以上结果证实了我们自定义loss的正确性,下面我们直接将自定义的loss置入compile中的loss参数中,看看会发生什么。

my_model = CustomModel(inputs, outputs)
my_model.compile(optimizer="adam", loss=custom_mse, metrics=["mae"])
my_model.fit(x, y, epochs=1, shuffle=False)
32/32 [==============================] - 0s 820us/step - loss: 0.1628 - mae: 0.3257

我们看到,这里的loss与我们与标准的tf.losses.MSE明显不同。这说明我们自定义的loss以这种方式直接传递进model.compile中,是完全错误的操作。

正确运用自定义loss的姿势是什么呢?下面揭晓。

loss_tracker = keras.metrics.Mean(name="loss")
mae_metric = keras.metrics.MeanAbsoluteError(name="mae")

class MyCustomModel(keras.Model):
   tf.random.set_seed(100)
   def train_step(self, data):
       # Unpack the data. Its structure depends on your model and       # on what you pass to `fit()`.       x, y = data

       with tf.GradientTape() as tape:
           y_pred = self(x, training=True)  # Forward pass           # Compute the loss value           # (the loss function is configured in `compile()`)           loss = custom_mse(y, y_pred)
           # loss += self.losses       # Compute gradients       trainable_vars = self.trainable_variables
       gradients = tape.gradient(loss, trainable_vars)
       # Update weights       self.optimizer.apply_gradients(zip(gradients, trainable_vars))
       
       # Compute our own metrics       loss_tracker.update_state(loss)
       mae_metric.update_state(y, y_pred)
       return {"loss": loss_tracker.result(), "mae": mae_metric.result()}
   
   @property
   def metrics(self):
       # We list our `Metric` objects here so that `reset_states()` can be       # called automatically at the start of each epoch       # or at the start of `evaluate()`.       # If you don't implement this property, you have to call       # `reset_states()` yourself at the time of your choosing.       return [loss_tracker, mae_metric]
   # Construct and compile an instance of CustomModelinputs = keras.Input(shape=(32,))
outputs = keras.layers.Dense(1)(inputs)
my_model_beta = MyCustomModel(inputs, outputs)
my_model_beta.compile(optimizer="adam")# Just use `fit` as usualmy_model_beta.fit(x, y, epochs=1, shuffle=False)
32/32 [==============================] - 0s 960us/step - loss: 0.2783 - mae: 0.4257

终于,通过跳过在 compile() 中传递损失函数,而在 train_step 中手动完成所有计算内容,我们获得了与之前默认tf.losses.MSE完全一致的输出,这才是我们想要的结果。

以上是“使用tensorflow2自定义损失函数需要注意什么”这篇文章的所有内容,感谢各位的阅读!相信大家都有了一定的了解,希望分享的内容对大家有所帮助,如果还想学习更多知识,欢迎关注亿速云行业资讯频道!

向AI问一下细节

免责声明:本站发布的内容(图片、视频和文字)以原创、转载和分享为主,文章观点不代表本网站立场,如果涉及侵权请联系站长邮箱:is@yisu.com进行举报,并提供相关证据,一经查实,将立刻删除涉嫌侵权内容。

AI