这篇文章主要介绍了怎么用Python OpenCV寻找两条曲线直接的最短距离的相关知识,内容详细易懂,操作简单快捷,具有一定借鉴价值,相信大家阅读完这篇怎么用Python OpenCV寻找两条曲线直接的最短距离文章都会有所收获,下面我们一起来看看吧。
import numpy as np import math import cv2 def cal_pt_distance(pt1, pt2): dist = math.sqrt(pow(pt1[0]-pt2[0],2) + pow(pt1[1]-pt2[1],2)) return dist font = cv2.FONT_HERSHEY_SIMPLEX img = cv2.imread('01.png') #cv2.imshow('src',img) gray = cv2.cvtColor(img,cv2.COLOR_BGR2GRAY) gray = cv2.GaussianBlur(gray, (3,3), 0) ret,thresh = cv2.threshold(gray, 150, 255, cv2.THRESH_BINARY) image,contours,hierarchy = cv2.findContours(thresh, cv2.RETR_EXTERNAL, cv2.CHAIN_APPROX_NONE) #thresh,contours,hierarchy = cv2.findContours(thresh, cv2.RETR_LIST, cv2.CHAIN_APPROX_NONE) flag = False minDist = 10000 minPt0 = (0,0) minPt1 = (0,0) for i in range(0,len(contours[1])):#遍历所有轮廓 pt = tuple(contours[1][i][0]) #print(pt) min_dis = 10000 min_pt = (0,0) #distance = cv2.pointPolygonTest(contours[1], pt, False) for j in range(0,len(contours[0])): pt2 = tuple(contours[0][j][0]) distance = cal_pt_distance(pt, pt2) #print(distance) if distance < min_dis: min_dis = distance min_pt = pt2 min_point = pt if min_dis < minDist: minDist = min_dis minPt0 = min_point minPt1 = min_pt temp = img.copy() cv2.drawContours(img,contours,1,(255,255,0),1) cv2.line(temp,pt,min_pt,(0,255,0),2,cv2.LINE_AA) cv2.circle(temp, pt,5,(255,0,255),-1, cv2.LINE_AA) cv2.circle(temp, min_pt,5,(0,255,255),-1, cv2.LINE_AA) cv2.imshow("img",temp) if cv2.waitKey(1)&0xFF ==27: #按下Esc键退出 flag = True break if flag: break cv2.line(img,minPt0,minPt1,(0,255,0),2,cv2.LINE_AA) cv2.circle(img, minPt0,3,(255,0,255),-1, cv2.LINE_AA) cv2.circle(img, minPt1,3,(0,255,255),-1, cv2.LINE_AA) cv2.putText(img,("min_dist=%0.2f"%minDist), (minPt1[0],minPt1[1]+15), font, 0.7, (0,255,0), 2) cv2.imshow('result', img) cv2.imwrite('result.png',img) cv2.waitKey(0) cv2.destroyAllWindows()
原图:
结果图:
关于“怎么用Python OpenCV寻找两条曲线直接的最短距离”这篇文章的内容就介绍到这里,感谢各位的阅读!相信大家对“怎么用Python OpenCV寻找两条曲线直接的最短距离”知识都有一定的了解,大家如果还想学习更多知识,欢迎关注亿速云行业资讯频道。
免责声明:本站发布的内容(图片、视频和文字)以原创、转载和分享为主,文章观点不代表本网站立场,如果涉及侵权请联系站长邮箱:is@yisu.com进行举报,并提供相关证据,一经查实,将立刻删除涉嫌侵权内容。