这篇“怎么使用opencv实现车道线检测”文章的知识点大部分人都不太理解,所以小编给大家总结了以下内容,内容详细,步骤清晰,具有一定的借鉴价值,希望大家阅读完这篇文章能有所收获,下面我们一起来看看这篇“怎么使用opencv实现车道线检测”文章吧。
void lane_detection(cv::Mat &src, cv::Mat &dst) { dst = cv::Mat::zeros(src.size(),src.type()); cv::Mat grid =cv::Mat::zeros(src.size(),src.type()); int iStep = 25; int iNUmsX = src.cols / iStep; int inUmsY = src.rows / iStep; for(int i = 1; i <= inUmsY; i++) { int yPos = i * iStep + src.cols / 5; cv::Point2d pt1,pt2; int iOffset = 10; pt1.x = 0 + iOffset; pt1.y = yPos; pt2.x = src.cols - iOffset; pt2.y = yPos; cv::line(grid,pt1,pt2,cv::Scalar(255), 1, cv::LINE_4); } for(int i = 1; i <= iNUmsX; i++) int xPos = i * iStep; pt1.x = xPos; pt1.y = 0 + iOffset + src.rows / 5; pt2.x = xPos; pt2.y = src.rows - iOffset; cv::imshow("grid", grid); cv::Mat bitNot; cv::bitwise_and(src, grid, bitNot); cv::Mat add = cv::Mat::zeros(bitNot.rows, bitNot.cols,bitNot.type()); int iDiffTh = 200; QTime timer; timer.start(); //#pragma omp parallel for num_threads(10) for (int i = 1; i < bitNot.rows - 1; i++) { for (int j = 1; j < bitNot.cols - 1; j++) { int iValueX = (int)bitNot.at<uchar>(i, j); int iValueXPre = (int)bitNot.at<uchar>(i-1, j); int iValueXNext = (int)bitNot.at<uchar>(i+1, j); int iValueY = (int)bitNot.at<uchar>(i, j); int iValueYPre = (int)bitNot.at<uchar>(i, j-1); int iValueYNext = (int)bitNot.at<uchar>(i, j+1); if((iValueX - iValueXPre > iDiffTh && iValueX - iValueXNext > iDiffTh) || (iValueY - iValueYPre > iDiffTh && iValueY - iValueYNext > iDiffTh)) { add.at<uchar>(i, j) = 255; } } } qDebug()<<"process time: "<<timer.elapsed()<<" ms"; //形态学预处理 cv::Mat matDilate; cv::Mat k33 = cv::getStructuringElement(cv::MORPH_RECT, cv::Size(9, 9), cv::Point(-1, -1)); cv::morphologyEx(add, matDilate, cv::MORPH_DILATE, k33, cv::Point(-1, -1), 3); cv::imshow("matDilate", matDilate); //cv::bitwise_not(src, matDilate, matRoi); cv::Mat matRoi; cv::bitwise_and(src, matDilate, matRoi); cv::imshow("matRoi", matRoi); cv::Mat matThresh; cv::threshold(matRoi, matThresh, 200, 255,cv::THRESH_BINARY); cv::imshow("matThresh", matThresh); //std::vector<std::vector<cv::Point>> contours; //cv::findContours(matThresh,contours,) std::vector<std::vector<cv::Point> > contoursDefect; std::vector<cv::Vec4i> hierarchyDefect; cv::Mat canves; cv::cvtColor(src, canves,cv::COLOR_RGBA2RGB); cv::findContours(matThresh, contoursDefect, hierarchyDefect, cv::RETR_EXTERNAL, cv::CHAIN_APPROX_NONE); for (size_t i = 0; i < contoursDefect.size(); i++) { cv::Mat contour(contoursDefect.at(i));//第i个轮廓 double area = contourArea(contour); if (area >= 50) cv::Moments moment;//矩 moment = moments(contour, false); cv::Point2d pt1; double m00 = moment.m00 + 0.01; pt1.x = moment.m10 / m00;//计算重心横坐标 pt1.y = moment.m01 / m00;//计算重心纵坐标 cv::drawContours(canves, contoursDefect, i, cv::Scalar(255, 255, 0), -1); } cv::imshow("canves", canves); cv::waitKey(0); } void test_lane_detection() int i = 0; while(1) cv::Mat src; QString dir("D:\\QtProject\\Opencv_Example\\gen_grid_region\\scene_"); QString path; if(i>9) path = QString("%1%2%3").arg(dir).arg(i++).arg(".png"); else path = QString("%1%2%3%4").arg(dir).arg("0").arg(i++).arg(".png"); cout<<path.toStdString(); src = cv::imread(path.toStdString(), cv::IMREAD_GRAYSCALE); if (src.empty()) { cout << "Cannot load image" << endl; return; } cv::imshow("src", src); cv::Mat dst; lane_detection(src, dst);
以上就是关于“怎么使用opencv实现车道线检测”这篇文章的内容,相信大家都有了一定的了解,希望小编分享的内容对大家有帮助,若想了解更多相关的知识内容,请关注亿速云行业资讯频道。
免责声明:本站发布的内容(图片、视频和文字)以原创、转载和分享为主,文章观点不代表本网站立场,如果涉及侵权请联系站长邮箱:is@yisu.com进行举报,并提供相关证据,一经查实,将立刻删除涉嫌侵权内容。