这篇文章主要介绍“Java中提供synchronized后还要提供Lock的原因是什么”,在日常操作中,相信很多人在Java中提供synchronized后还要提供Lock的原因是什么问题上存在疑惑,小编查阅了各式资料,整理出简单好用的操作方法,希望对大家解答”Java中提供synchronized后还要提供Lock的原因是什么”的疑惑有所帮助!接下来,请跟着小编一起来学习吧!
摘要: 在Java中提供了synchronized关键字来保证只有一个线程能够访问同步代码块。既然已经提供了synchronized关键字,那为何在Java的SDK包中,还会提供Lock接口呢?这是不是重复造轮子,多此一举呢?今天,我们就一起来探讨下这个问题。
在Java中提供了synchronized
关键字来保证只有一个线程能够访问同步代码块。既然已经提供了synchronized
关键字,那为何在Java的SDK包中,还会提供Lock接口呢?这是不是重复造轮子,多此一举呢?今天,我们就一起来探讨下这个问题。
问题?
既然JVM中提供了synchronized关键字来保证只有一个线程能够访问同步代码块,为何还要提供Lock接口呢?这是在重复造轮子吗?Java的设计者们为何要这样做呢?让我们一起带着疑问往下看。
很多小伙伴可能会听说过,在Java 1.5版本中,synchronized的性能不如Lock,但在Java 1.6版本之后,synchronized
做了很多优化,性能提升了不少。那既然synchronized关键字的性能已经提升了,那为何还要使用Lock呢?
如果我们向更深层次思考的话,就不难想到了:我们使用synchronized
加锁是无法主动释放锁的,这就会涉及到死锁的问题。
如果要发生死锁,则必须存在以下四个必要条件,四者缺一不可。
互斥条件
在一段时间内某资源仅为一个线程所占有。此时若有其他线程请求该资源,则请求线程只能等待。
不可剥夺条件
线程所获得的资源在未使用完毕之前,不能被其他线程强行夺走,即只能由获得该资源的线程自己来释放(只能是主动释放)。
请求与保持条件
线程已经保持了至少一个资源,但又提出了新的资源请求,而该资源已被其他线程占有,此时请求线程被阻塞,但对自己已获得的资源保持不放。
循环等待条件
在发生死锁时必然存在一个进程等待队列{P1,P2,…,Pn},其中P1等待P2占有的资源,P2等待P3占有的资源,…,Pn等待P1占有的资源,形成一个进程等待环路,环路中每一个进程所占有的资源同时被另一个申请,也就是前一个进程占有后一个进程所深情地资源。
如果我们的程序使用synchronized
关键字发生了死锁时,synchronized关键是是无法破坏“不可剥夺”这个死锁的条件的。这是因为synchronized申请资源的时候, 如果申请不到, 线程直接进入阻塞状态了, 而线程进入阻塞状态, 啥都干不了, 也释放不了线程已经占有的资源。
然而,在大部分场景下,我们都是希望“不可剥夺”这个条件能够被破坏。也就是说对于“不可剥夺”这个条件,占用部分资源的线程进一步申请其他资源时, 如果申请不到, 可以主动释放它占有的资源, 这样不可剥夺这个条件就破坏掉了。
如果我们自己重新设计锁来解决synchronized
的问题,我们该如何设计呢?
了解了synchronized的局限性之后,如果是让我们自己实现一把同步锁,我们该如何设计呢?也就是说,我们在设计锁的时候,要如何解决synchronized的局限性问题呢?这里,我觉得可以从三个方面来思考这个问题。
(1)能够响应中断。 synchronized
的问题是, 持有锁A后, 如果尝试获取锁B失败, 那么线程就进入阻塞状态, 一旦发生死锁, 就没有任何机会来唤醒阻塞的线程。 但如果阻塞状态的线程能够响应中断信号, 也就是说当我们给阻塞的线程发送中断信号的时候, 能够唤醒它, 那它就有机会释放曾经持有的锁A。 这样就破坏了不可剥夺条件了。
(2)支持超时。 如果线程在一段时间之内没有获取到锁, 不是进入阻塞状态, 而是返回一个错误, 那这个线程也有机会释放曾经持有的锁。 这样也能破坏不可剥夺条件。
(3)非阻塞地获取锁。 如果尝试获取锁失败, 并不进入阻塞状态, 而是直接返回, 那这个线程也有机会释放曾经持有的锁。 这样也能破坏不可剥夺条件。
体现在Lock接口上,就是Lock接口提供的三个方法,
如下所示:
// 支持中断的API void lockInterruptibly() throws InterruptedException; // 支持超时的API boolean tryLock(long time, TimeUnit unit) throws InterruptedException; // 支持非阻塞获取锁的API boolean tryLock();
lockInterruptibly()
支持中断。
tryLock()方法
tryLock()方法是有返回值的,它表示用来尝试获取锁,如果获取成功,则返回true,如果获取失败(即锁已被其他线程获取),则返回false,也就说这个方法无论如何都会立即返回。在拿不到锁时不会一直在那等待。
tryLock(long time, TimeUnit unit)方法
tryLock
(long time, TimeUnit unit)方法和tryLock()方法是类似的,只不过区别在于这个方法在拿不到锁时会等待一定的时间,在时间期限之内如果还拿不到锁,就返回false。如果一开始拿到锁或者在等待期间内拿到了锁,则返回true。
也就是说,对于死锁问题,Lock能够破坏不可剥夺的条件,例如,我们下面的程序代码就破坏了死锁的不可剥夺的条件。
public class TansferAccount{ private Lock thisLock = new ReentrantLock(); private Lock targetLock = new ReentrantLock(); //账户的余额 private Integer balance; //转账操作 public void transfer(TansferAccount target, Integer transferMoney){ boolean isThisLock = thisLock.tryLock(); if(isThisLock){ try{ boolean isTargetLock = targetLock.tryLock(); if(isTargetLock){ try{ if(this.balance >= transferMoney){ this.balance -= transferMoney; target.balance += transferMoney; } }finally{ targetLock.unlock } } }finally{ thisLock.unlock(); } } } }
例外,Lock下面有一个ReentrantLock
,而ReentrantLock
支持公平锁和非公平锁。
在使用ReentrantLock的时候, ReentrantLock中有两个构造函数, 一个是无参构造函数, 一个是传入fair参数的构造函数。 fair参数代表的是锁的公平策略, 如果传入true就表示需要构造一个公平锁, 反之则表示要构造一个非公平锁。如下代码片段所示。
//无参构造函数: 默认非公平锁 public ReentrantLock() { sync = new NonfairSync(); } //根据公平策略参数创建锁 public ReentrantLock(boolean fair){ sync = fair ? new FairSync() : new NonfairSync(); }
锁的实现在本质上都对应着一个入口等待队列, 如果一个线程没有获得锁, 就会进入等待队列, 当有线程释放锁的时候, 就需要从等待队列中唤醒一个等待的线程。 如果是公平锁, 唤醒的策略就是谁等待的时间长, 就唤醒谁, 很公平; 如果是非公平锁, 则不提供这个公平保证, 有可能等待时间短的线程反而先被唤醒。 而Lock是支持公平锁的,synchronized不支持公平锁。
最后,值得注意的是,在使用Lock加锁时,一定要在finally{}
代码块中释放锁,例如,下面的代码片段所示。
try{ lock.lock(); }finally{ lock.unlock(); }
注:其他synchronized和Lock的详细说明,小伙伴们自行查阅即可。
到此,关于“Java中提供synchronized后还要提供Lock的原因是什么”的学习就结束了,希望能够解决大家的疑惑。理论与实践的搭配能更好的帮助大家学习,快去试试吧!若想继续学习更多相关知识,请继续关注亿速云网站,小编会继续努力为大家带来更多实用的文章!
免责声明:本站发布的内容(图片、视频和文字)以原创、转载和分享为主,文章观点不代表本网站立场,如果涉及侵权请联系站长邮箱:is@yisu.com进行举报,并提供相关证据,一经查实,将立刻删除涉嫌侵权内容。