这篇“Java数据结构七大排序怎么使用”文章的知识点大部分人都不太理解,所以小编给大家总结了以下内容,内容详细,步骤清晰,具有一定的借鉴价值,希望大家阅读完这篇文章能有所收获,下面我们一起来看看这篇“Java数据结构七大排序怎么使用”文章吧。
当插入第i(i>=1)个元素时,前面的array[0],array[1],…,array[i-1]已经排好序,此时用array[i]与array[i-1],array[i-2],…进行比较,找到插入位置即将array[i]插入,原来位置上的元素顺序后移。
数据越接近有序,直接插入排序的时间消耗越少。
时间复杂度:O(N^2)
空间复杂度O(1),是一种稳定的算法
直接插入排序:
public static void insertSort(int[] array){ for (int i = 1; i < array.length; i++) { int tmp=array[i]; int j=i-1; for(;j>=0;--j){ if(array[j]>tmp){ array[j+1]=array[j]; }else{ break; } } array[j+1]=tmp; } }
希尔排序法的基本思想是:先选定一个整数gap,把待排序文件中所有记录分成gap个组,所有距离为gap的数分在同一组内,并对每一组内的数进行直接插入排序。然后取gap=gap/2,重复上述分组和排序的工作。当gap=1时,所有数在一组内进行直接插入排序。
希尔排序是对直接插入排序的优化。
当gap > 1时都是预排序,目的是让数组更接近于有序。当gap == 1时,数组已经接近有序的了,直接插入排序会很快。
希尔排序的时间复杂度不好计算,因为gap的取值方法很多,导致很难去计算。
希尔排序 :
public static void shellSort(int[] array){ int size=array.length; //这里定义gap的初始值为数组长度的一半 int gap=size/2; while(gap>0){ //间隔为gap的直接插入排序 for (int i = gap; i < size; i++) { int tmp=array[i]; int j=i-gap; for(;j>=0;j-=gap){ if(array[j]>tmp){ array[j+gap]=array[j]; }else{ break; } } array[j+gap]=tmp; } gap/=2; } }
在元素集合array[i]--array[n-1]中选择最小的数据元素
若它不是这组元素中的第一个,则将它与这组元素中的第一个元素交换
在剩余的集合中,重复上述步骤,直到集合剩余1个元素
时间复杂度:O(N^2)
空间复杂度为O(1),不稳定
选择排序 :
//交换 private static void swap(int[] array,int i,int j){ int tmp=array[i]; array[i]=array[j]; array[j]=tmp; } //选择排序 public static void chooseSort(int[] array){ for (int i = 0; i < array.length; i++) { int minIndex=i;//记录最小值的下标 for (int j = i+1; j < array.length; j++) { if (array[j]<array[minIndex]) { minIndex=j; } } swap(array,i,minIndex); } }
堆排序的两种思路(以升序为例):
创建小根堆,依次取出堆顶元素放入数组中,直到堆为空
创建大根堆,定义堆的尾元素位置key,每次交换堆顶元素和key位置的元素(key--),直到key到堆顶,此时将堆中元素层序遍历即为升序(如下)
时间复杂度:O(N^2)
空间复杂度:O(N),不稳定
堆排序:
//向下调整 public static void shiftDown(int[] array,int parent,int len){ int child=parent*2+1; while(child<len){ if(child+1<len){ if(array[child+1]>array[child]){ child++; } } if(array[child]>array[parent]){ swap(array,child,parent); parent=child; child=parent*2+1; }else{ break; } } } //创建大根堆 private static void createHeap(int[] array){ for (int parent = (array.length-1-1)/2; parent >=0; parent--) { shiftDown(array,parent,array.length); } } //堆排序 public static void heapSort(int[] array){ //创建大根堆 createHeap(array); //排序 for (int i = array.length-1; i >0; i--) { swap(array,0,i); shiftDown(array,0,i); } }
两层循环,第一层循环表示要排序的趟数,第二层循环表示每趟要比较的次数;这里的冒泡排序做了优化,在每一趟比较时,我们可以定义一个计数器来记录数据交换的次数,如果没有交换,则表示数据已经有序,不需要再进行排序了。
时间复杂度:O(N^2)
空间复杂度为O(1),是一个稳定的排序
冒泡排序:
public static void bubbleSort(int[] array){ for(int i=0;i<array.length-1;++i){ int count=0; for (int j = 0; j < array.length-1-i; j++) { if(array[j]>array[j+1]){ swap(array,j,j+1); count++; } } if(count==0){ break; } } }
任取待排序元素序列中的某元素作为基准值,按照该排序码将待排序集合分割成两子序列,左子序列中所有元素均小于基准值,右子序列中所有元素均大于基准值,然后最左右子序列重复该过程,直到所有元素都排列在相应位置上为止。
时间复杂度:最好O(n*logn):每次可以尽量将待排序的序列均匀分割
最坏O(N^2):待排序序列本身是有序的
空间复杂度:最好O(logn)、 最坏O(N)。不稳定的排序
(1)挖坑法
当数据有序时,快速排序就相当于二叉树没有左子树或右子树,此时空间复杂度会达到O(N),如果大量数据进行排序,可能会导致栈溢出。
public static void quickSort(int[] array,int left,int right){ if(left>=right){ return; } int l=left; int r=right; int tmp=array[l]; while(l<r){ while(array[r]>=tmp&&l<r){ //等号不能省略,如果省略,当序列中存在相同的值时,程序会死循环 r--; } array[l]=array[r]; while(array[l]<=tmp&&l<r){ l++; } array[r]=array[l]; } array[l]=tmp; quickSort(array,0,l-1); quickSort(array,l+1,right); }
(2)快速排序的优化
三数取中法选key
关于key值的选取,如果待排序序列是有序的,那么我们选取第一个或最后一个作为key可能导致分割的左边或右边为空,这时快速排序的空间复杂度会比较大,容易造成栈溢出。那么我们可以采用三数取中法来取消这种情况。找到序列的第一个,最后一个,以及中间的一个元素,以他们的中间值作为key值。
//key值的优化,只在快速排序中使用,则可以为private private int threeMid(int[] array,int left,int right){ int mid=(left+right)/2; if(array[left]>array[right]){ if(array[mid]>array[left]){ return left; } return array[mid]<array[right]?right:mid; }else{ if(array[mid]<array[left]){ return left; } return array[mid]>array[right]?right:mid; } }
递归到小的子区间时,可以考虑用插入排序
随着我们递归的进行,区间会变的越来越小,我们可以在区间小到一个值的时候,对其进行插入排序,这样代码的效率会提高很多。
(3)快速排序的非递归实现
//找到一次划分的下标 public static int patition(int[] array,int left,int right){ int tmp=array[left]; while(left<right){ while(left<right&&array[right]>=tmp){ right--; } array[left]=array[right]; while(left<right&&array[left]<=tmp){ left++; } array[right]=array[left]; } array[left]=tmp; return left; } //快速排序的非递归 public static void quickSort2(int[] array){ Stack<Integer> stack=new Stack<>(); int left=0; int right=array.length-1; stack.push(left); stack.push(right); while(!stack.isEmpty()){ int r=stack.pop(); int l=stack.pop(); int p=patition(array,l,r); if(p-1>l){ stack.push(l); stack.push(p-1); } if(p+1<r){ stack.push(p+1); stack.push(r); } } }
归并排序(MERGE-SORT):该算法是采用分治法(Divide and Conquer)的一个非常典型的应用。将已有序的子序列合并,得到完全有序的序列;即先使每个子序列有序,再使子序列段间有序。若将两个有序表合并成一个有序表,称为二路归并。
时间复杂度:O(n*logN)(无论有序还是无序)
空间复杂度:O(N)。是稳定的排序。
//归并排序:递归 public static void mergeSort(int[] array,int left,int right){ if(left>=right){ return; } int mid=(left+right)/2; //递归分割 mergeSort(array,left,mid); mergeSort(array,mid+1,right); //合并 merge(array,left,right,mid); } //非递归 public static void mergeSort1(int[] array){ int gap=1; while(gap<array.length){ for (int i = 0; i < array.length; i+=2*gap) { int left=i; int mid=left+gap-1; if(mid>=array.length){ mid=array.length-1; } int right=left+2*gap-1; if(right>=array.length){ right=array.length-1; } merge(array,left,right,mid); } gap=gap*2; } } //合并:合并两个有序数组 public static void merge(int[] array,int left,int right,int mid){ int[] tmp=new int[right-left+1]; int k=0; int s1=left; int e1=mid; int s2=mid+1; int e2=right; while(s1<=e1&&s2<=e2){ if(array[s1]<=array[s2]){ tmp[k++]=array[s1++]; }else{ tmp[k++]=array[s2++]; } } while(s1<=e1){ tmp[k++]=array[s1++]; } while(s2<=e2){ tmp[k++]=array[s2++]; } for (int i = left; i <= right; i++) { array[i]=tmp[i-left]; } }
排序方法 | 最好时间复杂度 | 最坏时间复杂度 | 空间复杂度 | 稳定性 |
直接插入排序 | O(n) | O(n^2) | O(1) | 稳定 |
希尔排序 | O(n) | O(n^2) | O(1) | 不稳定 |
直接排序 | O(n^2) | O(n^2) | O(1) | 不稳定 |
堆排序 | O(nlog(2)n) | O(nlog(2)n) | O(1) | 不稳定 |
冒泡排序 | O(n) | O(n^2) | O(1) | 稳定 |
快速排序 | O(nlog(2)n) | O(n^2) | O(nlog(2)n) | 不稳定 |
归并排序 | O(nlog(2)n) | O(nlog(2)n) | O(n) | 稳定 |
以上就是关于“Java数据结构七大排序怎么使用”这篇文章的内容,相信大家都有了一定的了解,希望小编分享的内容对大家有帮助,若想了解更多相关的知识内容,请关注亿速云行业资讯频道。
免责声明:本站发布的内容(图片、视频和文字)以原创、转载和分享为主,文章观点不代表本网站立场,如果涉及侵权请联系站长邮箱:is@yisu.com进行举报,并提供相关证据,一经查实,将立刻删除涉嫌侵权内容。