这篇文章主要介绍了Pandas reindex重置索引如何使用的相关知识,内容详细易懂,操作简单快捷,具有一定借鉴价值,相信大家阅读完这篇Pandas reindex重置索引如何使用文章都会有所收获,下面我们一起来看看吧。
重置索引(reindex)可以更改原 DataFrame 的行标签或列标签,并使更改后的行、列标签与 DataFrame 中的数据逐一匹配。通过重置索引操作,您可以完成对现有数据的重新排序。如果重置的索引标签在原 DataFrame 中不存在,那么该标签对应的元素值将全部填充为 NaN。
看一组简单示例:
import pandas as pd import numpy as np N=20 df = pd.DataFrame({ 'A': pd.date_range(start='2016-01-01',periods=N,freq='D'), 'x': np.linspace(0,stop=N-1,num=N), 'y': np.random.rand(N), 'C': np.random.choice(['Low','Medium','High'],N).tolist(), 'D': np.random.normal(100, 10, size=(N)).tolist() }) #重置行、列索引标签 df_reindexed = df.reindex(index=[0,2,5], columns=['A', 'C', 'B']) print(df_reindexed)
输出结果:
A C B
0 2020-12-07 Medium NaN
2 2020-12-09 Low NaN
5 2020-12-12 High NaN
现有 a、b 两个 DataFrame 对象,如果想让 a 的行索引与 b 相同,您可以使用 reindex_like() 方法。示例如下:
import pandas as pd import numpy as np a = pd.DataFrame(np.random.randn(10,3),columns=['col1','col2','col3']) b = pd.DataFrame(np.random.randn(7,3),columns=['col1','col2','col3']) a= a.reindex_like(b) print(a)
输出结果:
col1 col2 col3
0 1.776556 -0.821724 -1.220195
1 -1.401443 0.317407 -0.663848
2 0.300353 -1.010991 0.939143
3 0.444041 -1.875384 0.846112
4 0.967159 0.369450 -0.414128
5 0.320863 -1.223477 -0.337110
6 -0.933665 0.909382 1.129481
上述示例,a 会按照 b 的形式重建行索引。需要特别注意的是,a 与 b 的列索引标签必须相同。
reindex_like() 提供了一个可选的参数method,使用它来填充相应的元素值,参数值介绍如下:
pad/ffill:向前填充值;
bfill/backfill:向后填充值;
nearest:从距离最近的索引值开始填充。
示例如下:
import pandas as pd import numpy as np df1 = pd.DataFrame(np.random.randn(6,3),columns=['col1','col2','col3']) df2 = pd.DataFrame(np.random.randn(2,3),columns=['col1','col2','col3']) #使df2和df1行标签相同 print(df2.reindex_like(df1)) #向前填充 print(df2.reindex_like(df1,method='ffill'))
输出结果:
#填充前
col1 col2 col3
0 0.129055 0.835440 0.383065
1 -0.357231 0.379293 1.211549
2 NaN NaN NaN
3 NaN NaN NaN
4 NaN NaN NaN
5 NaN NaN NaN
#填充后
col1 col2 col3
0 0.129055 0.835440 0.383065
1 -0.357231 0.379293 1.211549
2 -0.357231 0.379293 1.211549
3 -0.357231 0.379293 1.211549
4 -0.357231 0.379293 1.211549
5 -0.357231 0.379293 1.211549
reindex_like() 还提供了一个额外参数 limit,该参数用来控制填充的最大行数。示例如下:
import pandas as pd import numpy as np df1 = pd.DataFrame(np.random.randn(6,3),columns=['col1','col2','col3']) df2 = pd.DataFrame(np.random.randn(2,3),columns=['col1','col2','col3']) print (df2.reindex_like(df1)) #最多填充2行 print (df2.reindex_like(df1,method='ffill',limit=2))
输出结果:
col1 col2 col3
0 -1.829469 0.310332 -2.008861
1 -1.038512 0.749333 -0.094335
2 NaN NaN NaN
3 NaN NaN NaN
4 NaN NaN NaN
5 NaN NaN NaNcol1 col2 col3
0 -1.829469 0.310332 -2.008861
1 -1.038512 0.749333 -0.094335
2 -1.038512 0.749333 -0.094335
3 -1.038512 0.749333 -0.094335
4 NaN NaN NaN
5 NaN NaN NaN
由上述示例可以看出,填充了 2、3 行 缺失值,也就是只填充了 2 行数据。
rename() 方法允许您使用某些映射(dict或Series)或任意函数来对行、列标签重新命名,示例如下:
import pandas as pd import numpy as np df1 = pd.DataFrame(np.random.randn(6,3),columns=['col1','col2','col3']) print (df1) #对行和列重新命名 print (df1.rename(columns={'col1' : 'c1', 'col2' : 'c2'},index = {0 : 'apple', 1 : 'banana', 2 : 'durian'}))
输出结果:
col1 col2 col3
0 -1.762133 -0.636819 -0.309572
1 -0.093965 -0.924387 -2.031457
2 -1.231485 -0.738667 1.415724
3 -0.826322 0.206574 -0.731701
4 1.863816 -0.175705 0.491907
5 0.677361 0.870041 -0.636518c1 c2 col3
apple -1.762133 -0.636819 -0.309572
banana -0.093965 -0.924387 -2.031457
durian -1.231485 -0.738667 1.415724
3 -0.826322 0.206574 -0.731701
4 1.863816 -0.175705 0.491907
5 0.677361 0.870041 -0.636518
rename() 方法提供了一个 inplace 参数,默认值为 False,表示拷贝一份原数据,并在复制后的数据上做重命名操作。若 inplace=True 则表示在原数据的基础上重命名。
关于“Pandas reindex重置索引如何使用”这篇文章的内容就介绍到这里,感谢各位的阅读!相信大家对“Pandas reindex重置索引如何使用”知识都有一定的了解,大家如果还想学习更多知识,欢迎关注亿速云行业资讯频道。
免责声明:本站发布的内容(图片、视频和文字)以原创、转载和分享为主,文章观点不代表本网站立场,如果涉及侵权请联系站长邮箱:is@yisu.com进行举报,并提供相关证据,一经查实,将立刻删除涉嫌侵权内容。