温馨提示×

温馨提示×

您好,登录后才能下订单哦!

密码登录×
登录注册×
其他方式登录
点击 登录注册 即表示同意《亿速云用户服务条款》

python中DataFrame数据合并merge()和concat()方法怎么用

发布时间:2022-09-21 17:04:23 来源:亿速云 阅读:178 作者:iii 栏目:开发技术

这篇文章主要讲解了“python中DataFrame数据合并merge()和concat()方法怎么用”,文中的讲解内容简单清晰,易于学习与理解,下面请大家跟着小编的思路慢慢深入,一起来研究和学习“python中DataFrame数据合并merge()和concat()方法怎么用”吧!

    merge()

    1.常规合并

    ①方法1

    指定一个参照列,以该列为准,合并其他列。

    import pandas as pd
    
    df1 = pd.DataFrame({'id': ['001', '002', '003'],
                        'num1': [120, 101, 104],
                        'num2': [110, 102, 121],
                        'num3': [105, 120, 113]})
    df2 = pd.DataFrame({'id': ['001', '002', '003'],
                        'num4': [80, 86, 79]})
    print(df1)
    print("=======================================")
    print(df2)
    print("=======================================")
    df_merge = pd.merge(df1, df2, on='id')
    print(df_merge)

    python中DataFrame数据合并merge()和concat()方法怎么用

    ②方法2

    要实现该合并,也可以通过索引来合并,即以index列为基准。将left_index 和 right_index 都设置为True
    即可。(left_index 和 right_index 都默认为False,left_index表示左表以左表数据的index为基准, right_index表示右表以右表数据的index为基准。)

    import pandas as pd
    
    df1 = pd.DataFrame({'id': ['001', '002', '003'],
                        'num1': [120, 101, 104],
                        'num2': [110, 102, 121],
                        'num3': [105, 120, 113]})
    df2 = pd.DataFrame({'id': ['001', '002', '003'],
                        'num4': [80, 86, 79]})
    print(df1)
    print("=======================================")
    print(df2)
    print("=======================================")
    
    df_merge = pd.merge(df1, df2, left_index=True, right_index=True)
    print(df_merge)

    python中DataFrame数据合并merge()和concat()方法怎么用

    相比方法①,区别在于,如图,方法②合并出的数据中有重复列。

    重要参数

    pd.merge(right,how=‘inner’, on=“None”, left_on=“None”, right_on=“None”, left_index=False, right_index=False )

    参数描述
    left左表,合并对象,DataFrame或Series
    right右表,合并对象,DataFrame或Series
    how合并方式,可以是left(左合并), right(右合并), outer(外合并), inner(内合并)
    on基准列 的列名
    left_on左表基准列列名
    right_on右表基准列列名
    left_index左列是否以index为基准,默认False,否
    right_index右列是否以index为基准,默认False,否

    其中,left_index与right_index 不能与 on 同时指定。

    合并方式 left right outer inner

    准备数据‘

    新准备一组数据:

    import pandas as pd
    
    df1 = pd.DataFrame({'id': ['001', '002', '003'],
                        'num1': [120, 101, 104],
                        'num2': [110, 102, 121],
                        'num3': [105, 120, 113]})
    df2 = pd.DataFrame({'id': ['001', '004', '003'],
                        'num4': [80, 86, 79]})
    print(df1)
    print("=======================================")
    print(df2)
    print("=======================================")

    python中DataFrame数据合并merge()和concat()方法怎么用

    inner(默认)

    使用来自两个数据集的键的交集

    df_merge = pd.merge(df1, df2, on='id')
    print(df_merge)

    python中DataFrame数据合并merge()和concat()方法怎么用

    outer

    使用来自两个数据集的键的并集

    df_merge = pd.merge(df1, df2, on='id', how="outer")
    print(df_merge)

    python中DataFrame数据合并merge()和concat()方法怎么用

    left

    使用来自左数据集的键

    df_merge = pd.merge(df1, df2, on='id', how='left')
    print(df_merge)

    python中DataFrame数据合并merge()和concat()方法怎么用

    right

    使用来自右数据集的键

    df_merge = pd.merge(df1, df2, on='id', how='right')
    print(df_merge)

    python中DataFrame数据合并merge()和concat()方法怎么用

    2.多对一合并

    import pandas as pd
    
    df1 = pd.DataFrame({'id': ['001', '002', '003'],
                        'num1': [120, 101, 104],
                        'num2': [110, 102, 121],
                        'num3': [105, 120, 113]})
    df2 = pd.DataFrame({'id': ['001', '001', '003'],
                        'num4': [80, 86, 79]})
    print(df1)
    print("=======================================")
    print(df2)
    print("=======================================")

    python中DataFrame数据合并merge()和concat()方法怎么用

    如图,df2中有重复id1的数据。

    合并

    df_merge = pd.merge(df1, df2, on='id')
    print(df_merge)

    合并结果如图所示:

    python中DataFrame数据合并merge()和concat()方法怎么用

    依然按照默认的Inner方式,使用来自两个数据集的键的交集。且重复的键的行会在合并结果中体现为多行。

    3.多对多合并

    如图表1和表2中都存在多行id重复的。

    import pandas as pd
    df1 = pd.DataFrame({'id': ['001', '002', '002', '002', '003'],
                        'num1': [120, 101, 104, 114, 123],
                        'num2': [110, 102, 121, 113, 126],
                        'num3': [105, 120, 113, 124, 128]})
    df2 = pd.DataFrame({'id': ['001', '001', '002', '003', '001'],
                        'num4': [80, 86, 79, 88, 93]})
    print(df1)
    print("=======================================")
    print(df2)
    print("=======================================")

    python中DataFrame数据合并merge()和concat()方法怎么用

    df_merge = pd.merge(df1, df2, on='id')
    print(df_merge)

    python中DataFrame数据合并merge()和concat()方法怎么用

    concat()

    pd.concat(objs, axis=0, join=‘outer’, ignore_index:bool=False,keys=None,levels=None,names=None, verify_integrity:bool=False,sort:bool=False,copy:bool=True)

    参数描述
    objsSeries,DataFrame或Panel对象的序列或映射
    axis默认为0,表示列。如果为1则表示行。
    join默认为"outer",也可以为"inner"
    ignore_index默认为False,表示保留索引(不忽略)。设为True则表示忽略索引。

    其他重要参数通过实例说明。

    1.相同字段的表首位相连

    首先准备三组DataFrame数据:

    import pandas as pd
    df1 = pd.DataFrame({'id': ['001', '002', '003'],
                        'num1': [120, 114, 123],
                        'num2': [110, 102, 121],
                        'num3': [113, 124, 128]})
    df2 = pd.DataFrame({'id': ['004', '005'],
                        'num1': [120, 101],
                        'num2': [113, 126],
                        'num3': [105, 128]})
    df3 = pd.DataFrame({'id': ['007', '008', '009'],
                        'num1': [120, 101, 125],
                        'num2': [113, 126, 163],
                        'num3': [105, 128, 114]})
    
    
    print(df1)
    print("=======================================")
    print(df2)
    print("=======================================")
    print(df3)

    python中DataFrame数据合并merge()和concat()方法怎么用

    合并

    dfs = [df1, df2, df3]
    result = pd.concat(dfs)
    print(result)

    python中DataFrame数据合并merge()和concat()方法怎么用

    如果想要在合并后,标记一下数据都来自于哪张表或者数据的某类别,则也可以给concat加上 参数keys

    result = pd.concat(dfs, keys=['table1', 'table2', 'table3'])
    print(result)

    python中DataFrame数据合并merge()和concat()方法怎么用

    此时,添加的keys与原来的index组成元组,共同成为新的index。

    print(result.index)

    python中DataFrame数据合并merge()和concat()方法怎么用

    2.横向表合并(行对齐)

    准备两组DataFrame数据:

    import pandas as pd
    df1 = pd.DataFrame({'num1': [120, 114, 123],
                        'num2': [110, 102, 121],
                        'num3': [113, 124, 128]}, index=['001', '002', '003'])
    df2 = pd.DataFrame({'num3': [117, 120, 101, 126],
                        'num5': [113, 125, 126, 133],
                        'num6': [105, 130, 128, 128]}, index=['002', '003', '004', '005'])
    
    print(df1)
    print("=======================================")
    print(df2)

    python中DataFrame数据合并merge()和concat()方法怎么用

    当axis为默认值0时:

    result = pd.concat([df1, df2])
    print(result)

    python中DataFrame数据合并merge()和concat()方法怎么用

    横向合并需要将axis设置为1

    result = pd.concat([df1, df2], axis=1)
    print(result)

    python中DataFrame数据合并merge()和concat()方法怎么用

    对比以上输出差异。

    • axis=0时,即默认纵向合并时,如果出现重复的行,则会同时体现在结果中

    • axis=1时,即横向合并时,如果出现重复的列,则会同时体现在结果中。

    3.交叉合并

    result = pd.concat([df1, df2], axis=1, join='inner')
    print(result)

    python中DataFrame数据合并merge()和concat()方法怎么用

    感谢各位的阅读,以上就是“python中DataFrame数据合并merge()和concat()方法怎么用”的内容了,经过本文的学习后,相信大家对python中DataFrame数据合并merge()和concat()方法怎么用这一问题有了更深刻的体会,具体使用情况还需要大家实践验证。这里是亿速云,小编将为大家推送更多相关知识点的文章,欢迎关注!

    向AI问一下细节

    免责声明:本站发布的内容(图片、视频和文字)以原创、转载和分享为主,文章观点不代表本网站立场,如果涉及侵权请联系站长邮箱:is@yisu.com进行举报,并提供相关证据,一经查实,将立刻删除涉嫌侵权内容。

    AI