这篇“numpy.reshape(-1,1)如何使用”文章的知识点大部分人都不太理解,所以小编给大家总结了以下内容,内容详细,步骤清晰,具有一定的借鉴价值,希望大家阅读完这篇文章能有所收获,下面我们一起来看看这篇“numpy.reshape(-1,1)如何使用”文章吧。
数组新的shape属性应该要与原来的配套,如果等于-1的话,那么Numpy会根据剩下的维度计算出数组的另外一个shape属性值。
举个例子:
x = np.array([[2, 0], [1, 1], [2, 3]])
指定新数组行为3,列为,2,则:
y = x.reshape(3,2) y Out[43]: array([[2, 0], [1, 1], [2, 3]])
指定新数组列为1,则:
y = x.reshape(-1,1) y Out[34]: array([[2], [0], [1], [1], [2], [3]])
指定新数组列为2,则:
y = x.reshape(-1,2) y Out[37]: array([[2, 0], [1, 1], [2, 3]])
指定新数组行为1,则:
y = x.reshape(1,-1) y Out[39]: array([[2, 0, 1, 1, 2, 3]])
指定新数组行为2,则:
y = x.reshape(2,-1) y Out[41]: array([[2, 0, 1], [1, 2, 3]])
如果你的数据只有一个特征,可以用reshape(-1,1)改变你的数据形状;或者如果你的数据只包含一个样本,可以使用reshape(1,-1)来改变。
e = np.array([1]) #只包含一个数据 f = e.reshape(1,-1) #改变形状,输出f之后发现它已经变成了二维数据
import numpy as np a = np.array([[1,2,3],[4,5,6]]) #是两行三列的数据,二维 b = np.array([1,2]) #是一维数据 c = b.reshape(-1,1) #c已经变成了二维数据,变成了两行一列 d = b.reshape(1,-1) #d变成了一行两列的数据, print('b.shape is {0}'.format(b.shape)) print(b) print('c.shape is {0}'.format(c.shape)) print(c) print('d.shape is {0},d array is {1}'.format(d.shape,d))
可以发现reshape(-1,1)是将一维数据在行上变化,而reshape(1,-1)是将一维数据在列上变化
以上就是关于“numpy.reshape(-1,1)如何使用”这篇文章的内容,相信大家都有了一定的了解,希望小编分享的内容对大家有帮助,若想了解更多相关的知识内容,请关注亿速云行业资讯频道。
免责声明:本站发布的内容(图片、视频和文字)以原创、转载和分享为主,文章观点不代表本网站立场,如果涉及侵权请联系站长邮箱:is@yisu.com进行举报,并提供相关证据,一经查实,将立刻删除涉嫌侵权内容。