今天小编给大家分享一下Pandas中Series的属性,方法,常用操作使用实例分析的相关知识点,内容详细,逻辑清晰,相信大部分人都还太了解这方面的知识,所以分享这篇文章给大家参考一下,希望大家阅读完这篇文章后有所收获,下面我们一起来了解一下吧。
包的引入:
import numpy as np import pandas as pd
s = pd.Series() print(s) print(type(s))
需要传入一个列表序列
l = [1, 2, 3, 4] s = pd.Series(l) print(s) print('-'*20) print(type(s))
需要传入一个元组序列
t = (1, 2, 3) s = pd.Series(t) print(s) print('-'*20) print(type(s))
需要传入一个字典
m = {'zs': 12, 'ls': 23, 'ww': 22} s = pd.Series(m) print(s) print('-'*20) print(type(s))
需要传入一个 ndarray
ndarr = np.array([1, 2, 3]) s = pd.Series(ndarr) print(s) print('-'*20) print(type(s))
index:用于设置 Series 对象的索引
age = [12, 23, 22, 34] name = ['zs', 'ls', 'ww', 'zl'] s = pd.Series(age, index=name) print(s) print('-'*20) print(type(s))
num = 999 s = pd.Series(num, index=[1, 2, 3, 4]) print(s) print('-'*20) print(type(s))
ndarr = np.arange(0, 10, 2) s = pd.Series(5, index=ndarr) print(s) print('-'*20) print(type(s))
l = [11, 22, 33, 44] s = pd.Series(l) print(s) print('-'*20) ndarr = s.values print(ndarr) print('-'*20) print(type(ndarr))
d = {'zs': 12, 'ls': 23, 'ww': 35} s = pd.Series(d) print(s) print('-'*20) idx = s.index print(idx) print('-'*20) print(type(idx))
d = {'zs': 12, 'ls': 23, 'ww': 35} s = pd.Series(d) print(s) print('-'*20) print(s.dtype)
d = {'zs': 12, 'ls': 23, 'ww': 35} s = pd.Series(d) print(s) print('-'*20) print(s.size)
d = {'zs': 12, 'ls': 23, 'ww': 35} s1 = pd.Series(d) print(s1) print('-'*20) print(s1.ndim) l = [[1, 1], [2, 2], [3, 3]] s2 = pd.Series(l) print(s2) print('-'*20) print(s2.ndim)
d = {'zs': 12, 'ls': 23, 'ww': 35} s1 = pd.Series(d) print(s1) print('-'*20) print(s1.shape) print() l = [[1, 1], [2, 2], [3, 3]] s2 = pd.Series(l) print(s2) print('-'*20) print(s2.shape)
l = [12, 23, 24, 34] s = pd.Series(l, index=['zs', 'ls', 'ww', 'zl']) print(s) print() print(s.mean())
l1 = [12, 23, 24, 34] s1 = pd.Series(l, index=['zs', 'ls', 'ww', 'zl']) print(s1) print() print(s1.max()) print(s1.min()) print() l2 = ['ac', 'ca', 'cd', 'ab'] s2 = pd.Series(l2) print(s2) print() print(s2.max()) print(s2.min())
l1 = [12, 23, 24, 34] s1 = pd.Series(l, index=['zs', 'ls', 'ww', 'zl']) print(s1) print() # argmax() -- 最大值的数字索引 # idxmax() -- 最大值的标签索引 # 两个都不支持字符串类型的数据 print(s1.max(), s1.argmax(), s1.idxmax()) print(s1.min(), s1.argmin(), s1.idxmin())
l = [12, 23, 24, 34] s = pd.Series(l, index=['zs', 'ls', 'ww', 'zl']) print(s) print() print(s.median())
l = [12, 23, 24, 34] s = pd.Series(l, index=['zs', 'ls', 'ww', 'zl']) print(s) print() print(s.value_counts())
l = [12, 23, 24, 34] s = pd.Series(l, index=['zs', 'ls', 'ww', 'zl']) print(s) print() print(s.mode()) print() l = [12, 23, 24, 34, 34] s = pd.Series(l, index=['zs', 'ls', 'ww', 'zl', 'zq']) print(s) print() print(s.mode())
四分位数:把数值从小到大排列并分成四等分,处于三个分割点位置的数值就是四分位数。
需要传入一个列表,列表中的元素为要获取的数的对应位置
l = [1, 1, 2, 2, 3, 3, 4, 4] s = pd.Series(l) print(s) print() print(s.quantile([0, .25, .50, .75, 1]))
总体标准差是反映研究总体内个体之间差异程度的一种统计指标。
总体标准差计算公式:
由于总体标准差计算出来会偏小,所以采用 ( n − d d o f ) (n-ddof) (n−ddof)的方式适当扩大标准差,即样本标准差。
样本标准差计算公式:
l = [1, 1, 2, 2, 3, 3, 4, 4] s = pd.Series(l) print(s) print() # 总体标准差 print(s.std()) print() print(s.std(ddof=1)) print() # 样本标准差 print(s.std(ddof=2))
l = [1, 1, 2, 2, 3, 3, 4, 4] s = pd.Series(l) print(s) print() print(s.describe())
ascending:True为升序(默认),False为降序 3.10.1 升序
l = [4, 2, 1, 3] s = pd.Series(l) print(s) print() s = s.sort_values() print(s)
l = [4, 2, 1, 3] s = pd.Series(l) print(s) print() s = s.sort_values(ascending=False) print(s)
ascending:True为升序(默认),False为降序
l = [12, 23, 24, 34] s = pd.Series(l, index=['zs', 'ls', 'ww', 'zl']) print(s) print() s = s.sort_index() print(s)
l = [12, 23, 24, 34] s = pd.Series(l, index=['zs', 'ls', 'ww', 'zl']) print(s) print() s = s.sort_index() print(s)
需要传入一个函数参数
# x 为当前遍历到的元素 def func(x): if (x%2==0): return x+1 else: return x l = [12, 23, 24, 34] s = pd.Series(l, index=['zs', 'ls', 'ww', 'zl']) print(s) print() # 调用 apply 方法,会将 Series 中的每个元素带入 func 函数中进行处理 s = s.apply(func) print(s)
对象的前 x 个元素 需要传入一个数 x ,表示查看前 x 个元素,默认为前5个
l = [12, 23, 24, 34] s = pd.Series(l, index=['zs', 'ls', 'ww', 'zl']) print(s) print() # head(x) 查看 Series 对象的前 x 个元素 print(s.head(2))
需要传入一个数 x ,表示查看后 x 个元素,默认为后5个
l = [12, 23, 24, 34] s = pd.Series(l, index=['zs', 'ls', 'ww', 'zl']) print(s) print() # tail(x) 查看 Series 对象的后 x 个元素 print(s.tail(2))
l = [12, 23, 24, 34] s = pd.Series(l) print(s) print() print(s[0]) print() print(s[1:-2]) print() print(s[::2]) print() print(s[::-1])
l = [12, 23, 24, 34] s = pd.Series(l, index=['zs', 'ls', 'ww', 'zl']) print(s) print() print(s[0]) print() print(s[1:-2]) print() print(s[::2]) print() print(s[::-1])
l = [12, 23, 24, 34] s = pd.Series(l, index=['zs', 'ls', 'ww', 'zl']) print(s) print() print(s['zs']) print() # 自定义标签索引进行切片包含开始与结束位置 print(s['ls':'zl']) print() print(s['zs':'zl':2]) print() # 注意切边范围的方向与步长的方向 print(s['zl':'zs':-1])
l = [12, 23, 24, 34] s = pd.Series(l, index=['zs', 'ls', 'ww', 'zl']) print(s) print() idx = (s%2==0) print(idx) print() # 索引掩码(也是一个数组) # 索引掩码个数与原数组的个数一致,数组每个元素都与索引掩码中的元素一一对应 # 数组每个元素都对应着索引掩码中的一个True或False # 只有索引掩码中为True所对应元素组中的元素才会被选中 print(s[idx])
l = [12, 23, 24, 34] s = pd.Series(l, index=['zs', 'ls', 'ww', 'zl']) print(s) print() # 选出指定索引对应的元素 print(s[['zs', 'ww']]) print() print(s[[1, 2]])
传入要删除元素的标签索引
l = [12, 23, 24, 34] s = pd.Series(l, index=['zs', 'ls', 'ww', 'zl']) print(s) print() s.pop('ww') print(s)
传入要删除元素的标签索引
l = [12, 23, 24, 34] s = pd.Series(l, index=['zs', 'ls', 'ww', 'zl']) print(s) print() # drop() 会返回一个删除元素后的新数组,不会对原数组进行修改 s = s.drop('zs') print(s)
l = [12, 23, 24, 34] s = pd.Series(l, index=['zs', 'ls', 'ww', 'zl']) print(s) print() s['zs'] = 22 print(s)
l = [12, 23, 24, 34] s = pd.Series(l, index=['zs', 'ls', 'ww', 'zl']) print(s) print() s[1] = 22 print(s)
l = [12, 23, 24, 34] s = pd.Series(l, index=['zs', 'ls', 'ww', 'zl']) print(s) print() s['ll'] = 22 print(s)
需要传入一个要添加到原 Series 对象的 Series 对象
l = [12, 23, 24, 34] s = pd.Series(l, index=['zs', 'ls', 'ww', 'zl']) print(s) print() # 可以添加已经存在的索引及其值 s2 = pd.Series([11, 13], index=['zs', 'wd']) # append() 不会对原数组进行修改 s = s.append(s2) print(s) print() print(s['zs'])
以上就是“Pandas中Series的属性,方法,常用操作使用实例分析”这篇文章的所有内容,感谢各位的阅读!相信大家阅读完这篇文章都有很大的收获,小编每天都会为大家更新不同的知识,如果还想学习更多的知识,请关注亿速云行业资讯频道。
免责声明:本站发布的内容(图片、视频和文字)以原创、转载和分享为主,文章观点不代表本网站立场,如果涉及侵权请联系站长邮箱:is@yisu.com进行举报,并提供相关证据,一经查实,将立刻删除涉嫌侵权内容。