温馨提示×

温馨提示×

您好,登录后才能下订单哦!

密码登录×
登录注册×
其他方式登录
点击 登录注册 即表示同意《亿速云用户服务条款》

怎么用Go和Redis实现分布式互斥锁和红锁

发布时间:2022-11-08 10:46:31 来源:亿速云 阅读:141 作者:iii 栏目:编程语言

这篇文章主要介绍了怎么用Go和Redis实现分布式互斥锁和红锁的相关知识,内容详细易懂,操作简单快捷,具有一定借鉴价值,相信大家阅读完这篇怎么用Go和Redis实现分布式互斥锁和红锁文章都会有所收获,下面我们一起来看看吧。

互斥锁

Redis里有一个设置如果不存在的命令,我们可以通过这个命令来实现互斥锁功能,在Redis官方文档里面推荐的标准实现方式是SET resource_name my_random_value NX PX 30000这串命令,其中:

  • resource_name表示要锁定的资源

  • NX表示如果不存在则设置

  • PX 30000表示过期时间为30000毫秒,也就是30秒

  • my_random_value这个值在所有的客户端必须是唯一的,所有同一key的锁竞争者这个值都不能一样。

值必须是随机数主要是为了更安全的释放锁,释放锁的时候使用脚本告诉Redis:只有key存在并且存储的值和我指定的值一样才能告诉我删除成功,避免错误释放别的竞争者的锁。

由于涉及到两个操作,因此我们需要通过Lua脚本保证操作的原子性:

if redis.call("get",KEYS[1]) == ARGV[1] then
    return redis.call("del",KEYS[1])
else
    return 0
end

举个不用Lua脚本的例子:客户端A取得资源锁,但是紧接着被一个其他操作阻塞了,当客户端A运行完毕其他操作后要释放锁时,原来的锁早已超时并且被Redis自动释放,并且在这期间资源锁又被客户端B再次获取到。

因为判断和删除是两个操作,所以有可能A刚判断完锁就过期自动释放了,然后B就获取到了锁,然后A又调用了Del,导致把B的锁给释放了。

TryLock和Unlock实现

TryLock其实就是使用SET resource_name my_random_value NX PX 30000加锁,这里使用UUID作为随机值,并且在加锁成功时把随机值返回,这个随机值会在Unlock时使用;

Unlock解锁逻辑就是执行前面说到的lua脚本

func (l *Lock) TryLock(ctx context.Context) error {
   success, err := l.client.SetNX(ctx, l.resource, l.randomValue, ttl).Result()
   if err != nil {
      return err
   }
   // 加锁失败
   if !success {
      return ErrLockFailed
   }
   // 加锁成功
   l.randomValue = randomValue
   return nil
}

func (l *Lock) Unlock(ctx context.Context) error {
   return l.script.Run(ctx, l.client, []string{l.resource}, l.randomValue).Err()
}
Lock实现

Lock是阻塞的获取锁,因此在加锁失败的时候,需要重试。当然也可能出现其他异常情况(比如网络问题,请求超时等),这些情况则直接返回error

步骤如下:

  • 尝试加锁,加锁成功直接返回

  • 加锁失败则不断循环尝试加锁直到成功或出现异常情况

func (l *Lock) Lock(ctx context.Context) error {
  // 尝试加锁
  err := l.TryLock(ctx)
  if err == nil {
    return nil
  }
  if !errors.Is(err, ErrLockFailed) {
    return err
  }
  // 加锁失败,不断尝试
  ticker := time.NewTicker(l.tryLockInterval)
  defer ticker.Stop()
  for {
    select {
    case <-ctx.Done():
      // 超时
      return ErrTimeout
    case <-ticker.C:
      // 重新尝试加锁
      err := l.TryLock(ctx)
      if err == nil {
        return nil
      }
      if !errors.Is(err, ErrLockFailed) {
        return err
      }
    }
  }
}

实现看门狗机制

我们前面的例子中提到的互斥锁有一个小问题,就是如果持有锁客户端A被阻塞,那么A的锁可能会超时被自动释放,导致客户端B提前获取到锁。

为了减少这种情况的发生,我们可以在A持有锁期间,不断地延长锁的过期时间,减少客户端B提前获取到锁的情况,这就是看门狗机制。

当然,这没办法完全避免上述情况的发生,因为如果客户端A获取锁之后,刚好与Redis的连接关闭了,这时候也就没办法延长超时时间了。

看门狗实现

加锁成功时启动一个线程,不断地延长锁地过期时间;在Unlock时关闭看门狗线程。

看门狗流程如下:

  • 加锁成功,启动看门狗

  • 看门狗线程不断延长锁的过程时间

  • 解锁,关闭看门狗

func (l *Lock) startWatchDog() {
  ticker := time.NewTicker(l.ttl / 3)
  defer ticker.Stop()
  for {
    select {
    case <-ticker.C:
      // 延长锁的过期时间
      ctx, cancel := context.WithTimeout(context.Background(), l.ttl/3*2)
      ok, err := l.client.Expire(ctx, l.resource, l.ttl).Result()
      cancel()
      // 异常或锁已经不存在则不再续期
      if err != nil || !ok {
        return
      }
    case <-l.watchDog:
      // 已经解锁
      return
    }
  }
}

TryLock:启动看门狗

func (l *Lock) TryLock(ctx context.Context) error {
  success, err := l.client.SetNX(ctx, l.resource, l.randomValue, l.ttl).Result()
  if err != nil {
    return err
  }
  // 加锁失败
  if !success {
    return ErrLockFailed
  }
  // 加锁成功,启动看门狗
  go l.startWatchDog()
  return nil
}

Unlock:关闭看门狗

func (l *Lock) Unlock(ctx context.Context) error {
  err := l.script.Run(ctx, l.client, []string{l.resource}, l.randomValue).Err()
  // 关闭看门狗
  close(l.watchDog)
  return err
}

红锁

由于上面的实现是基于单Redis实例,如果这个唯一的实例挂了,那么所有请求都会因为拿不到锁而失败,为了提高容错性,我们可以使用多个分布在不同机器上的Redis实例,并且只要拿到其中大多数节点的锁就能加锁成功,这就是红锁算法。它其实也是基于上面的单实例算法的,只是我们需要同时对多个Redis实例获取锁。

加锁实现

在加锁逻辑里,我们主要是对每个Redis实例执行SET resource_name my_random_value NX PX 30000获取锁,然后把成功获取锁的客户端放到一个channel里(这里因为是多线程并发获取锁,使用slice可能有并发问题),同时使用sync.WaitGroup等待所有获取锁操作结束。

然后判断成功获取到的锁的数量是否大于一半,如果没有得到一半以上的锁,说明加锁失败,释放已经获得的锁。

如果加锁成功,则启动看门狗延长锁的过期时间。

func (l *RedLock) TryLock(ctx context.Context) error {
  randomValue := gofakeit.UUID()
  var wg sync.WaitGroup
  wg.Add(len(l.clients))
  // 成功获得锁的Redis实例的客户端
  successClients := make(chan *redis.Client, len(l.clients))
  for _, client := range l.clients {
    go func(client *redis.Client) {
      defer wg.Done()
      success, err := client.SetNX(ctx, l.resource, randomValue, ttl).Result()
      if err != nil {
        return
      }
      // 加锁失败
      if !success {
        return
      }
      // 加锁成功,启动看门狗
      go l.startWatchDog()
      successClients <- client
    }(client)
  }
  // 等待所有获取锁操作完成
  wg.Wait()
  close(successClients)
  // 如果成功加锁得客户端少于客户端数量的一半+1,表示加锁失败
  if len(successClients) < len(l.clients)/2+1 {
    // 就算加锁失败,也要把已经获得的锁给释放掉
    for client := range successClients {
      go func(client *redis.Client) {
        ctx, cancel := context.WithTimeout(context.Background(), ttl)
        l.script.Run(ctx, client, []string{l.resource}, randomValue)
        cancel()
      }(client)
    }
    return ErrLockFailed
  }

  // 加锁成功,启动看门狗
  l.randomValue = randomValue
  l.successClients = nil
  for successClient := range successClients {
    l.successClients = append(l.successClients, successClient)
  }

  return nil
}
看门狗实现

我们需要延长所有成功获取到的锁的过期时间。

func (l *RedLock) startWatchDog() {
  l.watchDog = make(chan struct{})
  ticker := time.NewTicker(resetTTLInterval)
  defer ticker.Stop()
  for {
    select {
    case <-ticker.C:
      // 延长锁的过期时间
      for _, client := range l.successClients {
        go func(client *redis.Client) {
          ctx, cancel := context.WithTimeout(context.Background(), ttl-resetTTLInterval)
          client.Expire(ctx, l.resource, ttl)
          cancel()
        }(client)
      }
    case <-l.watchDog:
      // 已经解锁
      return
    }
  }
}
解锁实现

我们需要解锁所有成功获取到的锁。

func (l *RedLock) Unlock(ctx context.Context) error {
   for _, client := range l.successClients {
      go func(client *redis.Client) {
         l.script.Run(ctx, client, []string{l.resource}, l.randomValue)
      }(client)
   }
   // 关闭看门狗
   close(l.watchDog)
   return nil
}

关于“怎么用Go和Redis实现分布式互斥锁和红锁”这篇文章的内容就介绍到这里,感谢各位的阅读!相信大家对“怎么用Go和Redis实现分布式互斥锁和红锁”知识都有一定的了解,大家如果还想学习更多知识,欢迎关注亿速云行业资讯频道。

向AI问一下细节

免责声明:本站发布的内容(图片、视频和文字)以原创、转载和分享为主,文章观点不代表本网站立场,如果涉及侵权请联系站长邮箱:is@yisu.com进行举报,并提供相关证据,一经查实,将立刻删除涉嫌侵权内容。

AI