这篇文章主要讲解了“VSCode中的依赖注入怎么实现”,文中的讲解内容简单清晰,易于学习与理解,下面请大家跟着小编的思路慢慢深入,一起来研究和学习“VSCode中的依赖注入怎么实现”吧!
如果有这样一个模块 A,它的实现依赖另一个模块 B 的能力,那么应该如何设计呢?很简单,我们可以在 A 模块的构造函数中实例化模块 B,这样就可以在模块 A 内部使用模块 B 的能力了。
但是这样做有两个问题,一是模块 A 的实例化过程中,需要手动实例化模块 B,而且如果模块 B 的依赖关系发生变化,那么也需要修改模块 A 的构造函数,导致代码耦合。class A {
constructor() {
this.b = new B();
}
}
class B {}
const a = new A();
二是在复杂项目中,我们在实例化模块 A 时,难以判断模块 B 是否被其他模块依赖而已经实例化过了,从而可能将模块 B 多次实例化。若模块 B 较重或者需要为单例设计,这将带来性能问题。
因此,更好的方式是,将所有模块的实例化交给外层框架,由框架统一管理模块的实例化过程,这样就可以解决上述两个问题。
这种将依赖对象通过外部注入,避免在模块内部实例化依赖的方式,称为依赖注入 (Dependencies Inject, 简称 DI)。这在软件工程中是一种常见的设计模式,我们在 Java 的 Spring,JS 的 Angular,Node 的 NestJS 等框架中都可以看到这种设计模式的应用。class A {
constructor(private b: B) {
this.b = b;
}
}
class B {}
class C {
constructor(private a: A, private b: B) {
this.b = b;
}
}
const b = new B();
const a = new A(b);
const c = new C(a, b);
当然,在实际应用中,由于模块众多,依赖复杂,我们很难像上面的例子一样,规划出来每个模块的实例化时机,从而编写模块实例化顺序。并且,许多模块可能并不需要第一时间被创建,需要按需实例化,因此,粗暴的统一实例化是不可取的。
因此我们需要一个统一的框架来分析并管理所有模块的实例化过程,这就是依赖注入框架的作用。
借助于 TypeScript 的装饰器能力,VSCode 实现了一个极为轻量化的依赖注入框架。我们可以先来简单实现一下,解开这个巧妙设计的神秘面纱。
实现一个依赖注入框架只需要两步,一个是将模块声明并注册到框架中进行管理,另一个是在模块构造函数中,声明所需要依赖的模块有哪些。
我们先来看模块的注册过程,这需要 TypeScript 的类装饰器能力。我们在注入时,只需要判断模块是否已经注册,如果没有注册,将模块的 id(这里简化为模块 Class 名称)与类型传入即可完成单个模块的注册。
之后我们再来看看模块是如何声明依赖的,这需要 TypeScript 的属性装饰器能力。我们在注入时,先判断依赖的模块是否已经被实例化,如果没有,则将依赖模块进行实例化,并存入框架中管理。最终返回已经被实例化完成的模块实例。 最后只需要保证框架本身在项目运行前完成实例化即可。(在例子中表示为 injector) 这样,一个最简化的依赖注入框架就完成了。由于保存了模块的类型与实例,它实现了模块的按需实例化,无需在项目启动时就初始化所有模块。export function Injectable(): ClassDecorator {
return (Target: Class): any => {
if (!collection.providers.has(Target.name)) {
collection.providers.set(Target.name, target);
}
return target;
};
}
export function Inject(): PropertyDecorator {
return (target: Property, propertyKey: string) => {
const instance = collection.dependencies.get(propertyKey);
if (!instance) {
const DependencyProvider: Class = collection.providers.get(propertyKey);
collection.dependencies.set(propertyKey, new DependencyProvider());
}
target[propertyKey] = collection.dependencies.get(propertyKey);
};
}
export class ServiceCollection {
readonly providers = new Map<string, any>();
readonly dependencies = new Map<string, any>();
}
const collection = new ServiceCollection();
export default collection;
我们可以尝试调用它,以上面举出的例子为例:
无需知晓模块 A,B 的实例化时机,直接初始化任何一个模块,框架会自动帮你找到并实例化好所有依赖的模块。@injectable()
class A {
constructor(@inject() private b: B) {
this.b = b;
}
}
@injectable()
class B {}
class C {
constructor(@inject() private a: A, @inject() private b: B) {
this.b = b;
}
}
const c = new C();
上面介绍了一个依赖注入框架的最简实现。但当我们真正阅读 VSCode 的源码时,我们发现 VSCode 中的依赖注入框架貌似并不是这样消费的。
例如在下面这段鉴权服务中,我们发现该类并没有@injectable()
作为类的依赖收集,并且依赖服务也直接用其类名作为修饰器,而不是@inject()
。
其实这里的修饰符并不是真正指向类名,而是一个同名的资源描述符 id(VSCode 中称之为 // src\vs\workbench\services\authentication\browser\authenticationService.ts
export class AuthenticationService extends Disposable implements IAuthenticationService {
constructor(
@IActivityService private readonly activityService: IActivityService,
@IExtensionService private readonly extensionService: IExtensionService,
@IStorageService private readonly storageService: IStorageService,
@IRemoteAgentService private readonly remoteAgentService: IRemoteAgentService,
@IDialogService private readonly dialogService: IDialogService,
@IQuickInputService private readonly quickInputService: IQuickInputService
) {}
}
ServiceIdentifier
),通常使用字符串或 Symbol 标识。
通过 ServiceIdentifier
作为 id,而不是简单粗暴地通过类名称作为 id 注册 Service,有利于处理项目中一个 interface 可能存在多态实现,需要同时多个同名类实例的问题。
此外,在构造 ServiceIdentifier
时,我们便可以将该类声明注入框架,而无需@injectable()
显示调用了。
那么,这样一个 ServiceIdentifier
该如何构造呢?
我们仅需通过// src\vs\platform\instantiation\common\instantiation.ts
/**
* The *only* valid way to create a {{ServiceIdentifier}}.
*/
export function createDecorator<T>(serviceId: string): ServiceIdentifier<T> {
if (_util.serviceIds.has(serviceId)) {
return _util.serviceIds.get(serviceId)!;
}
const id = <any>function (target: Function, key: string, index: number): any {
if (arguments.length !== 3) {
throw new Error('@IServiceName-decorator can only be used to decorate a parameter');
}
storeServiceDependency(id, target, index);
};
id.toString = () => serviceId;
_util.serviceIds.set(serviceId, id);
return id;
}
// 被 ServiceIdentifier 装饰的类在运行时,将收集该类的依赖,注入到框架中。
function storeServiceDependency(id: Function, target: Function, index: number): void {
if ((target as any)[_util.DI_TARGET] === target) {
(target as any)[_util.DI_DEPENDENCIES].push({ id, index });
} else {
(target as any)[_util.DI_DEPENDENCIES] = [{ id, index }];
(target as any)[_util.DI_TARGET] = target;
}
}
createDecorator
方法为类创建一个唯一的ServiceIdentifier
,并将其作为修饰符即可。
以上面的 AuthenticationService 为例,若所依赖的 ActivityService 需要变更多态实现,仅需修改 ServiceIdentifier
修饰符确定实现方式即可,无需更改业务的调用代码。
export const IActivityServicePlanA = createDecorator<IActivityService>("IActivityServicePlanA");
export const IActivityServicePlanB = createDecorator<IActivityService>("IActivityServicePlanB");
export interface IActivityService {...}
export class AuthenticationService {
constructor(
@IActivityServicePlanA private readonly activityService: IActivityService,
) {}
}
模块之间的依赖关系是有可能存在循环依赖的,比如 A 依赖 B,B 依赖 A。这种情况下进行两个模块的实例化会造成死循环,因此我们需要在框架中加入循环依赖检测机制来进行规避。
本质上,一个健康的模块依赖关系就是一个有向无环图(DAG),我们之前介绍过有向无环图在 excel 表格函数中的应用,放在依赖注入框架的设计中也同样适用。
我们可以通过深度优先搜索(DFS)来检测模块之间的依赖关系,如果发现存在循环依赖,则抛出异常。
该方法通过获取图节点的出度,将该类的全部依赖提取出来作为roots,然后逐个实例化,并从途中剥离该依赖节点。由于依赖树的构建是逐层依赖的,因此按顺序实例化即可。当发现该类的所有依赖都被实例化后,图中仍存在节点,则认为存在循环依赖,抛出异常。// src/vs/platform/instantiation/common/instantiationService.ts
while (true) {
let roots = graph.roots();
// if there is no more roots but still
// nodes in the graph we have a cycle
if (roots.length === 0) {
if (graph.length !== 0) {
throwCycleError();
}
break;
}
for (let root of roots) {
// create instance and overwrite the service collections
const instance = this._createInstance(root.data.desc, []);
this._services.set(root.data.id, instance);
graph.removeNode(root.data);
}
}
感谢各位的阅读,以上就是“VSCode中的依赖注入怎么实现”的内容了,经过本文的学习后,相信大家对VSCode中的依赖注入怎么实现这一问题有了更深刻的体会,具体使用情况还需要大家实践验证。这里是亿速云,小编将为大家推送更多相关知识点的文章,欢迎关注!
免责声明:本站发布的内容(图片、视频和文字)以原创、转载和分享为主,文章观点不代表本网站立场,如果涉及侵权请联系站长邮箱:is@yisu.com进行举报,并提供相关证据,一经查实,将立刻删除涉嫌侵权内容。